Three-Component Model-Based Decomposition for Polarimetric SAR Data

An improved three-component decomposition for polarimetric synthetic aperture radar (SAR) data is proposed in this paper. The reasons for the emergence of negative powers in the Freeman decomposition have been analyzed, and three corresponding improvements are included in the proposed method. First, the deorientation process is applied to the coherency matrix before it is decomposed into three scattering components. Then, the coherency matrix with the maximal polarimetric entropy, i.e., the unit matrix, is used as the new volume-scattering model instead of the original one adopted in the Freeman decomposition. A power constraint is also added to the proposed three-component decomposition. The E-SAR polarimetric data acquired over the Oberpfaffenhofen area in Germany are applied in the experiment. The results show that the pixels with negative powers are totally eliminated by the proposed decomposition, demonstrating the effectiveness of the new model.

[1]  Ya-Qiu Jin,et al.  Deorientation theory of polarimetric scattering targets and application to terrain surface classification , 2005, IEEE Trans. Geosci. Remote. Sens..

[2]  Hiroyoshi Yamada,et al.  Four-component scattering model for polarimetric SAR image decomposition , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[3]  J. Huynen Phenomenological theory of radar targets , 1970 .

[4]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Hiroyoshi Yamada,et al.  Polarimetric Scattering Model Decomposition for Pol-InSAR Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[6]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[7]  Hiroyoshi Yamada,et al.  A four-component decomposition of POLSAR images based on the coherency matrix , 2006, IEEE Geoscience and Remote Sensing Letters.

[8]  Jakob J. van Zyl,et al.  Requirements for Model-based Polarimetric Decompositions , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[9]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[10]  Anthony Freeman,et al.  Fitting a Two-Component Scattering Model to Polarimetric SAR Data From Forests , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[11]  W. L. Cameron,et al.  Feature motivated polarization scattering matrix decomposition , 1990, IEEE International Conference on Radar.

[12]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[13]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[14]  Thomas L. Ainsworth,et al.  On the estimation of radar polarization orientation shifts induced by terrain slopes , 2002, IEEE Trans. Geosci. Remote. Sens..

[15]  Ramata Magagi,et al.  Application of Target Decomposition Theorems Over Snow-Covered Forested Areas , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Irena Hajnsek,et al.  Potential of Estimating Soil Moisture Under Vegetation Cover by Means of PolSAR , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Stephen L. Durden,et al.  Three-component scattering model to describe polarimetric SAR data , 1993, Optics & Photonics.

[18]  Thomas L. Ainsworth,et al.  Polarimetric SAR data compensation for terrain azimuth slope variation , 2000, IEEE Trans. Geosci. Remote. Sens..

[19]  Hiroyoshi Yamada,et al.  POLSAR Image Analysis of Wetlands Using a Modified Four-Component Scattering Power Decomposition , 2008, IEEE Transactions on Geoscience and Remote Sensing.