Numerical approximation of the general compressible Stokes problem

In this paper, we propose a discretization for the compressible Stokes problem with an equation of state of the form p = ϕ(ρ) (where p stands for the pressure, ρ for the density and ϕ is a superlinear nondecreasing function from R to R). This scheme is based on Crouzeix-Raviart approximation spaces. The discretization of the momentum balance is obtained by the usual finite element technique. The discrete mass balance is obtained by a finite volume scheme, with an upwinding of the density, and two additional terms. We prove the existence of a discrete solution and the convergence of this approximate solution to a solution of the continuous problem.

[1]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[2]  Eduard Feireisl,et al.  Dynamics of Viscous Compressible Fluids , 2004 .

[3]  James H. Bramble A PROOF OF THE INF–SUP CONDITION FOR THE STOKES EQUATIONS ON LIPSCHITZ DOMAINS , 2003 .

[4]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[5]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[6]  Kenneth H. Karlsen,et al.  A Convergent Nonconforming Finite Element Method for Compressible Stokes Flow , 2009, SIAM J. Numer. Anal..

[7]  Antonín Novotný,et al.  Introduction to the mathematical theory of compressible flow , 2004 .

[8]  Pierre-Louis Lions,et al.  Mathematical Topics in Fluid Mechanics: Volume 2: Compressible Models , 1998 .

[9]  Raphaèle Herbin,et al.  Finite Volumes for Complex Applications VI Problems & Perspectives , 2011 .

[10]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[11]  Thierry Gallouët,et al.  A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case , 2009, Math. Comput..

[12]  A. Novotný,et al.  Introduction to the Mathematical Theory of Compressible Flow , 2004 .

[13]  Thierry Gallouët,et al.  A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case , 2007, Math. Comput..

[14]  Thierry Gallouët,et al.  Convergence of the MAC Scheme for the Compressible Stokes Equations , 2010, SIAM J. Numer. Anal..