Implicit Runge-Kutta Methods for the Discretization of Time Domain Integral Equations

Implicit Runge-Kutta based schemes are proposed for solving the time domain integral equations of electromagnetic theory. The proposed technique maps a Laplace-domain equation to a Ƶ-domain equation using the Butcher tableau of the implicit Runge-Kutta scheme. A discrete time domain system is recovered by computing the inverse Ƶ-transform numerically. The resulting technique is capable of third- or fifth-order accuracy in time, and is stable independent of time step. Numerical results illustrate the accuracy and stability of the technique.

[1]  Andrew J. Poggio,et al.  CHAPTER 4 – Integral Equation Solutions of Three-dimensional Scattering Problems , 1973 .

[2]  M. J. Bluck,et al.  Costs and cost scaling in time-domain integral-equation analysis of electromagnetic scattering , 1998 .

[3]  Jian-Ming Jin,et al.  A Fast Fourier Transform Accelerated Marching-on-in-Time Algorithm for Electromagnetic Analysis , 2001 .

[4]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[5]  J. A. C. Weideman,et al.  Numerical Integration of Periodic Functions: A Few Examples , 2002, Am. Math. Mon..

[6]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[7]  E. Michielssen,et al.  A novel scheme for the solution of the time-domain integral equations of electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[8]  J. Butcher Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[9]  Eric Michielssen,et al.  Fast analysis of transient scattering from lossy inhomogeneous dielectric bodies , 2004 .

[10]  D. Weile,et al.  Electromagnetic Scattering From Dispersive Dielectric Scatterers Using the Finite Difference Delay Modeling Method , 2010, IEEE Transactions on Antennas and Propagation.

[11]  Yuan Xu,et al.  A new temporal basis function for the time-domain integral equation method , 2001, IEEE Microwave and Wireless Components Letters.

[12]  Alan V. Oppenheim,et al.  Discrete-time Signal Processing. Vol.2 , 2001 .

[13]  E. Michielssen,et al.  Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation , 2000 .

[14]  E. Michielssen,et al.  Time Domain CalderÓn Identities and Their Application to the Integral Equation Analysis of Scattering by PEC Objects Part II: Stability , 2009, IEEE Transactions on Antennas and Propagation.

[15]  Alexander Ostermann,et al.  RUNGE-KUTTA METHODS FOR PARABOLIC EQUATIONS AND CONVOLUTION QUADRATURE , 1993 .

[16]  P. Monk,et al.  A Finite Difference Delay Modeling Approach to the Discretization of the Time Domain Integral Equations of Electromagnetics , 2008, IEEE Transactions on Antennas and Propagation.

[17]  E. Michielssen,et al.  A fast time domain integral equation based scheme for analyzing scattering from dispersive objects , 2002, IEEE Transactions on Antennas and Propagation.

[18]  Chi Hou Chan,et al.  Improved temporal basis function for time domain electric field integral equation method , 1999 .

[19]  Eric Michielssen,et al.  A hierarchical FFT algorithm (HIL-FFT) for the fast analysis of transient electromagnetic scattering phenomena , 2002 .

[20]  E. Michielssen,et al.  An accurate scheme for the solution of the time-domain Integral equations of electromagnetics using higher order vector bases and bandlimited extrapolation , 2004, IEEE Transactions on Antennas and Propagation.

[21]  D. Weile,et al.  An accurate broad-band method of moments using higher order basis functions and tree-loop decomposition , 2004, IEEE Transactions on Antennas and Propagation.

[22]  M. Bluck,et al.  Time-domain BIE analysis of large three-dimensional electromagnetic scattering problems , 1997 .

[23]  Sadasiva M. Rao,et al.  A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape , 1992 .

[24]  C. Lubich Convolution quadrature and discretized operational calculus. II , 1988 .

[25]  Mingyu Lu,et al.  Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm , 2003 .

[26]  E. Michielssen,et al.  The multilevel plane wave time domain algorithm for the fast analysis of transient scattering phenomena , 1999, IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010).

[27]  Dugald B. Duncan,et al.  Averaging techniques for time-marching schemes for retarded potential integral equations , 1997 .

[28]  D. Weile,et al.  Robust solution of time-domain integral equations using loop-tree decomposition and bandlimited extrapolation , 2005, IEEE Transactions on Antennas and Propagation.

[29]  Eric Michielssen,et al.  Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm , 2000 .

[30]  Eric Michielssen,et al.  Plane-wave-time-domain-enhanced marching-on-in-time scheme for analyzing scattering from homogeneous dielectric structures. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  R. Mittra,et al.  Computational Methods for Electromagnetics , 1997 .

[32]  M. Bleszynski,et al.  AIM: Adaptive integral method for solving large‐scale electromagnetic scattering and radiation problems , 1996 .

[33]  A. C. Woo,et al.  Benchmark radar targets for the validation of computational electromagnetics programs , 1993 .

[34]  John J. Knab,et al.  Interpolation of band-limited functions using the approximate prolate series (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[35]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[36]  Agostino Monorchio,et al.  A space-time discretization criterion for a stable time-marching solution of the electric field integral equation , 1997 .

[37]  E. Miller,et al.  Direct time-domain techniques for transient radiation and scattering from wires , 1980, Proceedings of the IEEE.

[38]  Electromagnetic scattering from dispersive dielectric bodies using the finite difference delay modeling method with augmented equations , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[39]  E. Michielssen,et al.  Fast analysis of transient scattering in lossy media , 2002, IEEE Antennas and Wireless Propagation Letters.

[40]  Roberto D. Graglia,et al.  Higher order interpolatory vector bases for computational electromagnetics," Special Issue on "Advanced Numerical Techniques in Electromagnetics , 1997 .

[41]  D. Weile,et al.  Electromagnetic scattering from homogeneous dielectric bodies using time-domain integral equations , 2006, IEEE Transactions on Antennas and Propagation.

[42]  D.S. Weile,et al.  Strong Singularity Reduction for Curved Patches for the Integral Equations of Electromagnetics , 2009, IEEE Antennas and Wireless Propagation Letters.

[43]  B. P. Rynne,et al.  Stability of Time Marching Algorithms for the Electric Field Integral Equation , 1990 .

[44]  Weimin Han,et al.  Numerical Solution of Ordinary Differential Equations: Atkinson/Numerical , 2009 .

[45]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[46]  Penny J. Davies,et al.  A stability analysis of a time marching scheme for the general surface electric field integral equation , 1998 .

[47]  Tapan K. Sarkar,et al.  Analysis of transient scattering from composite arbitrarily shaped complex structures , 2000 .

[48]  Johnson J. H. Wang Generalized Moment Methods in Electromagnetics: Formulation and Computer Solution of Integral Equations , 1991 .

[49]  D. A. Dunavant High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .