Split‐Gate Organic Field Effect Transistors: Control Over Charge Injection and Transport

A split-gate field effect transistor containing four electrodes, source, drain, two gates allows enhanced transport for specific carrier species and separate control of carrier polarity over two gate regimes. The device can be operated as a transistor or a diode by controlling gate biases.

[1]  C. Adachi,et al.  Extremely Low‐Threshold Amplified Spontaneous Emission of 9,9′‐Spirobifluorene Derivatives and Electroluminescence from Field‐Effect Transistor Structure , 2007 .

[2]  K. Matsushige,et al.  Organic light-emitting transistors with split-gate structure and PN-hetero-boundary carrier recombination sites , 2008 .

[3]  Eugenio Cantatore,et al.  Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors , 2004 .

[4]  C. Dimitrakopoulos,et al.  Organic Thin Film Transistors for Large Area Electronics , 2002 .

[5]  D. Fichou,et al.  An all‐organic "soft" thin film transistor with very high carrier mobility , 1990 .

[6]  Daniel Moses,et al.  Electrochemical doping in electrolyte-gated polymer transistors. , 2007, Journal of the American Chemical Society.

[7]  Heinz von Seggern,et al.  Light-emitting field-effect transistor based on a tetracene thin film. , 2003, Physical review letters.

[8]  Fumio Sato,et al.  Perfluoropentacene: high-performance p-n junctions and complementary circuits with pentacene. , 2004, Journal of the American Chemical Society.

[9]  J. U. Lee,et al.  Carbon nanotube p-n junction diodes , 2004 .

[10]  John A. Rogers,et al.  Organic smart pixels , 1998 .

[11]  B. Saif,et al.  Heterodyning scheme employing quantum interference , 1998 .

[12]  D. Moses,et al.  Organic light emitting complementary inverters , 2010 .

[13]  D. Moses,et al.  Gate‐Controlled Light Emitting Diodes , 2008 .

[14]  M. Muccini A bright future for organic field-effect transistors , 2006, Nature materials.

[15]  Alan J. Heeger,et al.  Light emission from an ambipolar semiconducting polymer field-effect transistor , 2005 .

[16]  Jae Kwan Lee,et al.  Bulk heterojunction bipolar field-effect transistors processed with alkane dithiol , 2008 .

[17]  Phaedon Avouris,et al.  Efficient narrow-band light emission from a single carbon nanotube p-n diode. , 2010, Nature nanotechnology.

[18]  E. van Veenendaal,et al.  Solution-processed ambipolar organic field-effect transistors and inverters , 2003, Nature materials.

[19]  N. S. Sariciftci,et al.  Organic inverter circuits employing ambipolar pentacene field-effect transistors , 2006 .

[20]  C. Mueller,et al.  Dual input AND gate fabricated from a single channel poly(3-hexylthiophene) thin film field effect transistor , 2006 .

[21]  T. Riedl,et al.  Low loss contacts for organic semiconductor lasers , 2006 .

[22]  Wolfgang Kowalsky,et al.  Threshold Reduction in Polymer Lasers Based on Poly(9,9‐dioctylfluorene) with Statistical Binaphthyl Units , 2005 .

[23]  Richard H. Friend,et al.  Spatial control of the recombination zone in an ambipolar light-emitting organic transistor , 2006 .

[24]  D. Moses,et al.  High performance light emitting transistors , 2008 .