Spin-based quantum computers made by chemistry: hows and whys

This introductory review discusses the main problems facing the attempt to build quantum information processing systems (like quantum computers) from spin-based qubits. We emphasize ‘bottom-up’ attempts using methods from chemistry. The essentials of quantum computing are explained, along with a description of the qubits and their interactions in terms of physical spin qubits. The main problem to be overcome in this whole field is decoherence—it must be considered in any design for qubits. We give an overview of how decoherence works, and then describe some of the practical ways to suppress contributions to decoherence from spin bath and oscillator bath environments, and from dipolar interactions. Dipolar interactions create special problems of their own because of their long range. Finally, taking into account the problems raised by decoherence, by dipolar interactions, and by architectural constraints, we discuss various strategies for making chemistry-based spin qubits, using both magnetic molecules and magnetic ions.

[1]  W. Wernsdorfer,et al.  Single-molecule magnets: preparation and properties of low symmetry [Mn4O3(O2CPh-R)4(dbm)3] complexes with S = 9/2. , 2004, Journal of the American Chemical Society.

[2]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[3]  W. Wernsdorfer,et al.  Exchange-biased dimers of single-molecule magnets in OFF and ON states. , 2007, Journal of the American Chemical Society.

[4]  P. Stamp,et al.  Derivation of the low- T phase diagram of LiHo x Y 1 − x F 4 : A dipolar quantum Ising magnet , 2008 .

[5]  J. Mosselmans,et al.  Soft X-ray induced excited spin state trapping and soft X-ray photochemistry at the iron L2,3 edge in [Fe(phen)2(NCS)2] and [Fe(phen)2(NCSe)2] (phen = 1,10-phenanthroline)‡ , 1997 .

[6]  A. Caneschi,et al.  Large Clusters of Metal Ions: The Transition from Molecular to Bulk Magnets , 1994, Science.

[7]  A. Leggett,et al.  Quantum tunnelling in a dissipative system , 1983 .

[8]  Eugenio Coronado,et al.  Spin qubits with electrically gated polyoxometalate molecules. , 2007, Nature nanotechnology.

[9]  A. Dress,et al.  Giant metal-oxide-based spheres and their topology: from pentagonal building blocks to keplerates and unusual spin systems , 2001 .

[10]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[11]  S. Koshihara,et al.  Lanthanide double-decker complexes functioning as magnets at the single-molecular level. , 2003, Journal of the American Chemical Society.

[12]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[13]  E. Barco,et al.  Quantum interference of tunnel trajectories between states of different spin length in a dimeric molecular nanomagnet , 2008 .

[14]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[15]  S. Tarucha,et al.  Allowed and forbidden transitions in artificial hydrogen and helium atoms , 2002, Nature.

[16]  Coherent manipulation of electron spins up to ambient temperatures in Cr5+ (S = 1/2) doped K3NbO8. , 2007, Physical review letters.

[17]  John Preskill,et al.  Fault-tolerant quantum computation with long-range correlated noise. , 2006, Physical review letters.

[18]  U. Weiss Quantum Dissipative Systems , 1993 .

[19]  A. Leggett Quantum tunneling in the presence of an arbitrary linear dissipation mechanism , 1984 .

[20]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[21]  R. Feynman,et al.  The Theory of a general quantum system interacting with a linear dissipative system , 1963 .

[22]  V. Laukhin,et al.  Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound , 2000, Nature.

[23]  J. C. Wyant,et al.  Report to The American Physical Society of the study group on science and technology of directed energy weapons , 1987 .

[24]  Andrew P. Hines,et al.  Quantum walks, quantum gates, and quantum computers , 2007 .

[25]  H. Baranger,et al.  Decoherence by correlated noise and quantum error correction. , 2005, Physical review letters.

[26]  W. Hofer,et al.  Site-specific kondo effect at ambient temperatures in iron-based molecules. , 2007, Physical review letters.

[27]  Philip Stamp,et al.  Theory of the spin bath , 2000 .

[28]  Robert Raussendorf Quantum computation via translation-invariant operations on a chain of qubits , 2005 .

[29]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[30]  M. Steffen,et al.  Measurement of the Entanglement of Two Superconducting Qubits via State Tomography , 2006, Science.

[31]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[32]  A. Morello,et al.  Nuclear spin dynamics in the quantum regime of a single-molecule magnet. , 2004, Physical review letters.

[33]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[34]  D. Hubel,et al.  Physiology of visual cells in mouse superior colliculus and correlation with somatosensory and auditory input , 1975, Nature.

[35]  Resilient quantum computation in correlated environments: a quantum phase transition perspective. , 2006, Physical review letters.

[36]  S. Tarucha,et al.  Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System , 2002, Science.

[37]  Significance of the hyperfine interactions in the phase diagram of LiHoxY1-xF4. , 2005, Physical review letters.

[38]  E. Coronado,et al.  Mononuclear lanthanide single-molecule magnets based on polyoxometalates. , 2008, Journal of the American Chemical Society.

[39]  A. Morello,et al.  Dynamics and thermalization of the nuclear spin bath in the single-molecule magnet Mn 12 -ac : Test for the theory of spin tunneling , 2007, 0706.2760.

[40]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[41]  D. Loss,et al.  Quantum computing with molecular spin systems , 2009 .

[42]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[43]  A. Kuhn,et al.  Preparation and characterization of polyoxometalate-modified carbon nanosheets , 2006 .

[44]  Indirect exchange coupling between magnetic adatoms in carbon nanotubes , 2005, cond-mat/0503589.

[45]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[46]  N. Aliaga-Alcalde,et al.  Quantum Coherence in an Exchange-Coupled Dimer of Single-Molecule Magnets , 2003, Science.

[47]  F K Wilhelm,et al.  Quantum superposition of macroscopic persistent-current states. , 2000, Science.

[48]  Rare-earth solid-state qubits. , 2007, Nature nanotechnology.

[49]  M. Dube,et al.  Mechanisms of decoherence at low temperatures , 2001 .

[50]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[51]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[52]  Roland Omnès The Interpretation of Quantum Mechanics , 1987 .

[53]  P. Benioff Quantum Mechanical Models of Turing Machines That Dissipate No Energy , 1982 .

[54]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[55]  Gert-Ludwig Ingold,et al.  Quantum Brownian motion: The functional integral approach , 1988 .

[56]  Pairwise decoherence in coupled spin qubit networks. , 2006, Physical review letters.

[57]  J. Villain,et al.  TUNNELING AND MAGNETIC RELAXATION IN MESOSCOPIC MOLECULES , 1996 .

[58]  T. Mitra,et al.  Quantum oscillations in a molecular magnet , 2008, Nature.

[59]  P. Gütlich,et al.  Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system , 1984 .

[60]  H. Cheong,et al.  Coherent manipulation of electronic States in a double quantum dot. , 2003, Physical review letters.

[61]  The mixed-valent manganese [3 x 3] grid [Mn(III)4Mn(II)5(2poap-2H)6](ClO4)10.10 H2O, a mesoscopic spin-1/2 cluster. , 2006, Inorganic chemistry.

[62]  G. Molnár,et al.  Hard-X-ray-induced excited-spin-state trapping. , 2007, Angewandte Chemie.

[63]  J. Serrano,et al.  Highly congested liquid crystal structures: dendrimers, dendrons, dendronized and hyperbranched polymers. , 2007, Chemical Society reviews.

[64]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[65]  R. Feynman Quantum mechanical computers , 1986 .

[66]  Changwen Hu,et al.  Photoluminescent organic–inorganic composite films layer-by-layer self-assembled from the rare-earth-containing polyoxometalate Na9[EuW10O36] and poly(allylamine hydrochloride) , 2002 .

[67]  C. Lent,et al.  Molecular quantum-dot cellular automata , 2003 .

[68]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[69]  J. Meijer,et al.  Room-temperature coherent coupling of single spins in diamond , 2006, quant-ph/0605038.

[70]  P. Stamp,et al.  The decoherence puzzle , 2006 .

[71]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[72]  Rosenbaum,et al.  Quantum annealing of a disordered magnet , 1999, Science.

[73]  A. Zwick,et al.  Tetrathiafulvalene-based conducting deposits on silicon substrates , 2003 .

[74]  Ericka Stricklin-Parker,et al.  Ann , 2005 .