Large-scale sequencing of SARS-CoV-2 genomes from one region allows detailed epidemiology and enables local outbreak management
暂无分享,去创建一个
Evelien M. Adriaenssens | Gemma L. Kay | J. Wain | J. O’Grady | I. Charles | M. Webber | M. Yasir | R. Kingsley | N. Alikhan | D. Baker | L. de Oliveira Martins | A. Mather | L. Bedford | A. Page | R. Davidson | C. Brown | A. Tedim | G. Kay | Alp Aydin | T. Swingler | Nicholas M. Thomson | D. Aggarwal | C. Stuart | R. Prakash | E. Meader | S. Dervisevic | M. Chand | A. Kolyva | S. Smith | A. Gutiérrez | A. Trotter | Thanh Le-Viet | Steven J. Rudder | Rachael Stanley | Marilyn Diaz | Will Potter | Lizzie Meadows | A. Bell | Rachel Gilroy | Luke Griffith | Dheeraj K. Sethi | L. Coupland | N. Elumogo | D. Sethi | Dave J. Baker | Steven Rudder
[1] Darren L. Smith,et al. Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020 , 2020, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.
[2] Simon H. Tausch,et al. The PHA4GE SARS-CoV-2 Contextual Data Specification for Open Genomic Epidemiology , 2020 .
[3] Benoit Morel,et al. Phylogenetic Analysis of SARS-CoV-2 Data Is Difficult , 2020, bioRxiv.
[4] Richard Molenkamp,et al. Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands , 2020, Nature Medicine.
[5] Edward C. Holmes,et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology , 2020, Nature Microbiology.
[6] S. Rowland-Jones,et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus , 2020, Cell.
[7] Evelien M. Adriaenssens,et al. CoronaHiT: large scale multiplexing of SARS-CoV-2 genomes using Nanopore sequencing , 2020, bioRxiv.
[8] Joshua B. Singer,et al. Genomic epidemiology of SARS-CoV-2 spread in Scotland highlights the role of European travel in COVID-19 emergence , 2020, medRxiv.
[9] Jason D. Fernandes,et al. Stability of SARS-CoV-2 phylogenies , 2020, bioRxiv.
[10] S. Robson,et al. An integrated national scale SARS-CoV-2 genomic surveillance network , 2020, The Lancet Microbe.
[11] J. Bonfield,et al. COVID-19 ARTIC v3 Illumina library construction and sequencing protocol v3 , 2020, protocols.io.
[12] F. Balloux,et al. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2 , 2020, Infection, Genetics and Evolution.
[13] R. Kagan,et al. Evaluation of Transport Media and Specimen Transport Conditions for the Detection of SARS-CoV-2 by Use of Real-Time Reverse Transcription-PCR , 2020, Journal of Clinical Microbiology.
[14] Edward C. Holmes,et al. A dynamic nomenclature proposal for SARS-CoV-2 to assist genomic epidemiology , 2020, bioRxiv.
[15] M. Quail,et al. COVID-19 ARTIC v3 Illumina library construction and sequencing protocol v2 , 2020 .
[16] J. Quick. nCoV-2019 sequencing protocol v2 (GunIt) v2 , 2020 .
[17] Guangchuang Yu,et al. Using ggtree to Visualize Data on Tree‐Like Structures , 2020, Current protocols in bioinformatics.
[18] De-Min Han,et al. Gender Differences in Patients With COVID-19: Focus on Severity and Mortality , 2020, Frontiers in Public Health.
[19] E. Dong,et al. An interactive web-based dashboard to track COVID-19 in real time , 2020, The Lancet Infectious Diseases.
[20] Min Kang,et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients , 2020, The New England journal of medicine.
[21] E. Holmes,et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding , 2020, The Lancet.
[22] Y. Hu,et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China , 2020, The Lancet.
[23] J. Quick,et al. nCoV-2019 sequencing protocol v1 , 2020 .
[24] Olga Chernomor,et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era , 2019, bioRxiv.
[25] Karthik Gangavarapu,et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar , 2018, Genome Biology.
[26] Richard Myers,et al. SnapperDB: A database solution for routine sequencing analysis of bacterial isolates , 2017, bioRxiv.
[27] Nabil-Fareed Alikhan,et al. Comparison of classical multi-locus sequence typing software for next-generation sequencing data , 2017, Microbial genomics.
[28] Yuelong Shu,et al. GISAID: Global initiative on sharing all influenza data – from vision to reality , 2017, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.
[29] James Hadfield,et al. Phandango: an interactive viewer for bacterial population genomics , 2017, bioRxiv.
[30] Stefan Elbe,et al. Data, disease and diplomacy: GISAID's innovative contribution to global health , 2017, Global challenges.
[31] Khalil Abudahab,et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography , 2016, Microbial genomics.
[32] N. Loman,et al. CLIMB (the Cloud Infrastructure for Microbial Bioinformatics): an online resource for the medical microbiology community , 2016, bioRxiv.
[33] Simon R. Harris,et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments , 2016, bioRxiv.
[34] Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.
[35] Guy Cochrane,et al. The International Nucleotide Sequence Database Collaboration , 2012, Nucleic Acids Res..
[36] S. Bentley,et al. Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences. , 2012, Future microbiology.
[37] G. Cochrane,et al. The International Nucleotide Sequence Database Collaboration , 2011, Nucleic Acids Res..
[38] Gavin J. D. Smith,et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic , 2009, Nature.
[39] Ziheng Yang. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.
[40] I. C. O. B. Nomenclature,et al. IUPAC-IUB commission on biochemical nomenclature (CBN). Abbreviations and symbols for nucleic acids, polynucleotides and their constituents. , 1971, Journal of Molecular Biology.
[41] D. A. Jackson,et al. Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity , 2020, Cell.
[42] Abbreviations and Symbols for Nucleic Acids, Polynucleotides and their Constituents , 2005 .
[43] H. Kishino,et al. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.