Artificial Software Agents as Representatives of Their Human Principals in Operating-Room-Team-Forming

The scheduling of centralized operating theatres in large hospitals can be regarded as an archetypal cooperative decision problem. Multiagent systems (MAS) form an appealing paradigm for solving such problems. In a MAS-setting, each involved individual can be represented by an intelligent software agent that carries the specific constraints and the main preference-structures of his human principal. The scheduling can then be done by inter-agent negotiations, resulting in a cooperative solution, which optimizes “social welfare” and medical and organizational resource allocation simultaneously. For measuring human preference structures a concept based on conjoint analysis is introduced, that deduces individual utility functions suitable for inter-agent negotiations from human preference statements. Aggregation of individual preferences to find a final compromise schedule is then done by a distributed negotiation mechanism, based on the Nash-Bargaining-Solution of game theory.