TWO-WAY FLUID-STRUCTURE COUPLING IN VIBRATION AND DAMPING ANALYSIS OF AN OSCILLATING HYDROFOIL

RESUME Des les premieres phases de conception des composantes d'une turbine hydraulique, plusieurs facteurs, dont l'amortissement hydrodynamique et son influence sur la vibration des pales, doivent etre estimes par les constructeurs afin d'evaluer le comportement dynamique des composantes. L'etat de l'art actuel en la matiere consiste a determiner les caracteristiques dynamiques des aubes de turbine a l'aide de simulations numeriques du fluide (simulations CFD) en regime stationnaire afin d'estimer le champ de pression induit par le fluide sur les aubes de la turbine. Ce champ de pression est ensuite applique en tant que condition limite ou de chargement sur l'aube afin de simuler son comportement mecanique par une methode d'elements finis. Une telle approche est appelee couplage unidirectionnel, car aucune deviation de l'aube n'est reinjecte dans la simulation CFD. Pour capturer l'influence de l'aube deformee sur le rendement hydraulique, la deformation doit etre ramenee dans la simulation du fluide de telle sorte qu'une nouvelle solution CFD amelioree puisse etre calculee et ainsi que la boucle d'interaction entre le comportement du fluide et de la structure puisse etre fermee. Une telle boucle d'interaction bidirectionnelle entre les simulations du fluide et de la structure est appelee simulation couplee de l'interaction fluide-structure (ou FSI simulation, en anglais). C'est ce dernier type de simulation qui constitue l'objet du present memoire. Cette etude presente une validation des simulations numeriques tridimensionnelles de l'interaction fluide-structure d'un profile hydraulique vibrant et examine la contribution de l'amortissement hydrodynamique du fluide a l'amortissement total. Nous utilisons une simulation de l'interaction fluide-structure basee sur deux solveurs distincts, l'un pour le fluide (ANSYS-CFX 13) et l'autre pour la structure (ANSYS Classic 13). Ces solveurs s'executent sequentiellement et echangent des informations a des points de synchronisation precis entre les etapes de simulation de chacun des domaines. Dans un premier temps, afin de valider les etapes de base de l'approche de couplage bidirectionnelle pour la simulation de l'interaction fluide-structure, l'oscillation d'une plaque verticale dans une cavite remplie d'un fluide est examinee. Nous considerons egalement l'analyse transitoire d'une plaque seche encastree a une extremite afin d'evaluer l'effet de l'amortissement numerique sur les resultats de simulation. L'effet du choix du pas de temps et de la valeur d'amortissement visqueux sont egalement etudies en detail. Apres validation de l'approche proposee, une attention particuliere est accordee a l'evaluation de l'amortissement engendre par l'interaction fluide-structure dans des conditions realiste d'ecoulement fluide, grâce a l'application d'une modelisation bidirectionnelle de l'interaction.----------ABSTRACT Several factors in the design and analysis of hydropower structures, the identification of hydrodynamic damping and estimating its influences on the blade vibrations are crucial for constructors who try to assess the dynamics of runners in hydropower turbines at the earliest stage of the design phase. The current state-of-the-art approach to determine dynamic characteristics of the turbine blades consists of a steady state computational fluid dynamics (CFD) simulation which provides the fluid pressure on the turbine blade. This is then applied as a boundary or load condition for the finite element simulation of the configuration. Such an approach is called one-way coupled simulation since no deflection is fed back into CFD. To capture the influence of the deformed blade on the hydraulic performance, the deformation has to be brought back into the CFD solution such that an improved solution can be found and the loop can be closed. This comprises what is called two-way coupled fluid structure interaction (FSI) simulation or multi-field simulation, which is investigated in this thesis. This study presents a three-dimensional numerical fluid-structure interaction (FSI) modeling of a vibrating hydrofoil using the commercial software ANSYS-CFX and investigates the hydrodynamic damping as the fluid contribution to the total damping. We use an FSI simulation with two separate solvers, one for the fluid (CFD) and one for the structure (FEM) that run in sequential order with synchronization points to exchange information at the interface of the fluid and structure domains. In the present work the two commercially available solvers ANSYS CFX 13.0 and ANSYS Classic 13.0 are applied as CFD and FEM solver respectively. Different meshes were generated in this analysis for the fluid and solid fields. As the first step and to show the basic steps in fluid-structure interaction analysis with ANSYS-CFX and to validate the above mentioned two-way FSI approach, oscillation of a vertical plate in a cavity filled with a fluid is considered. We also consider the transient analysis of the plate with cantilever support in dry-condition to investigate the effect of considering numerical damping in the analysis. The effects of time step and viscous damping were also studied in details. After validating the proposed approach, special attention is paid to damping due to FSI in realistic flowing water conditions through the systematic application of a two-way fluid-structure interaction modeling.

[1]  D. Rockwell,et al.  Oscillator-Model Approach To Theidentification And Assessment Offlow-Induced Vibrations In A System , 1980 .

[2]  F Dompierre,et al.  Determination of turbine runner dynamic behaviour under operating condition by a two-way staggered fluid-structureinteraction method , 2010 .

[3]  Clarence W. de Silva,et al.  Vibration: Fundamentals and Practice , 1999 .

[4]  A. Lakis,et al.  Three-dimensional modeling of curved structures containing and/or submerged in fluid , 2008 .

[5]  Sung-Kie Youn,et al.  Spline‐based meshfree method , 2012 .

[6]  François Avellan,et al.  Hydrodynamic Damping Identification from an Impulse Response of a Vibrating Blade , 2009 .

[7]  Bernd Nennemann,et al.  Characterization of hydrofoil damping due to fluid–structure interaction using piezocomposite actuators , 2012 .

[8]  Ernst Rank,et al.  Computation of fluid-structure interaction on lightweight structures , 2001 .

[9]  Lixiang Zhang,et al.  Strongly coupled simulation of fluid–structure interaction in a Francis hydroturbine , 2009 .

[10]  Ke Sun,et al.  Three-dimensional numerical simulation of a vertical axis tidal turbine using the two-way fluid structure interaction approach , 2013 .

[11]  S. Hutchison Numerical Modelling of Hydrofoil Fluid-Structure Interaction , 2012 .

[12]  Wang Xucheng Dynamic analysis of hydraulic turbine runner and blade system(II) —Analysis of examples , 1998 .

[13]  Hannes Schmucker,et al.  Two-Way Coupled Fluid Structure Interaction Simulation of a Propeller Turbine , 2010 .

[14]  K. Namkoong,et al.  Computation of dynamic fluid-structure interaction in two-dimensional laminar flows using combined formulation , 2005 .

[15]  Xiaodong Sheldon Wang Fundamentals of Fluid-Solid Interactions: Analytical and Computational Approaches , 2008 .

[16]  Marc Christian Reese Vibration and Damping of Hydrofoils in Uniform Flow , 2010 .

[17]  Bert Jüttler,et al.  Isogeometric simulation of turbine blades for aircraft engines , 2012, Comput. Aided Geom. Des..

[18]  Eduard Egusquiza,et al.  Experimental investigation of added mass effects on a Francis turbine runner in still water , 2006 .

[19]  François Avellan,et al.  Fluid–structure coupling for an oscillating hydrofoil , 2010 .

[20]  K. Bathe Finite Element Procedures , 1995 .

[21]  A. N. Galybin,et al.  Modelling of flow-induced stresses in a Francis turbine runner , 2010, Adv. Eng. Softw..

[22]  Bhola Thapa,et al.  Computational Methods in Research of Hydraulic Turbines Operating In Challenging Environments , 2012 .

[23]  M. Schuch,et al.  Static and dynamic calculation of a Francis turbine runner with some remarks on accuracy , 1987 .

[24]  U Seidel,et al.  Application of fluid-structure coupling to predict the dynamic behavior of turbine components , 2010 .

[25]  Hiroshi Tanaka,et al.  Vibration Behavior and Dynamic Stress of Runners of Very High Head Reversible Pump-turbines , 2011 .