Microstructural parcellation of the human brain

Abstract The human cerebral cortex is composed of a mosaic of areas thought to subserve different functions. The parcellation of the cortex into areas has a long history and has been carried out using different combinations of structural, connectional, receptotopic, and functional properties. Here we give a brief overview of the history of cortical parcellation, and explore different microstructural properties and analysis techniques that can be used to define the borders between different regions. We show that accounting for the 3D geometry of the highly folded human cortex is especially critical for accurate parcellation. We close with some thoughts on future directions and best practices for combining modalities.

[1]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[2]  Alan C. Evans,et al.  Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI , 2000, NeuroImage.

[3]  Karl J. Friston,et al.  Image registration using a symmetric prior—in three dimensions , 1999, Human brain mapping.

[4]  David A Boas,et al.  En face speckle reduction in optical coherence microscopy by frequency compounding. , 2016, Optics letters.

[5]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[6]  Gereon R Fink,et al.  The somatotopic organization of cytoarchitectonic areas on the human parietal operculum. , 2007, Cerebral cortex.

[7]  Allan R. Jones,et al.  Comprehensive cellular‐resolution atlas of the adult human brain , 2016, The Journal of comparative neurology.

[8]  M. Sereno,et al.  A human parietal face area contains aligned head-centered visual and tactile maps , 2006, Nature Neuroscience.

[9]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[10]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[11]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[12]  P. Dechent,et al.  Quantitative FLASH MRI at 3T using a rational approximation of the Ernst equation , 2008, Magnetic resonance in medicine.

[13]  U Klose,et al.  Fast 3D radiofrequency field mapping using echo‐planar imaging , 2006, Magnetic resonance in medicine.

[14]  Jonathan D. Power,et al.  Studying Brain Organization via Spontaneous fMRI Signal , 2014, Neuron.

[15]  Michael I. Miller,et al.  Bayesian Construction of Geometrically Based Cortical Thickness Metrics , 2000, NeuroImage.

[16]  Lawrence L. Wald,et al.  Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 , 2010, NeuroImage.

[17]  Brian A. Wandell,et al.  In vivo evidence of functional and anatomical stripe-based subdivisions in human V2 and V3 , 2017, Scientific Reports.

[18]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[19]  R. Tootell,et al.  Columnar Segregation of Magnocellular and Parvocellular Streams in Human Extrastriate Cortex , 2017, The Journal of Neuroscience.

[20]  David L. Thomas,et al.  Using High Angular Resolution Diffusion Imaging Data to Discriminate Cortical Regions , 2013, PloS one.

[21]  R. Nieuwenhuys The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data , 2013, Brain Structure and Function.

[22]  Aaron T. Winder,et al.  Weak correlations between hemodynamic signals and ongoing neural activity during the resting state , 2017, Nature Neuroscience.

[23]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[24]  Ruey-Song Huang,et al.  Dodecapus: An MR-compatible system for somatosensory stimulation , 2007, NeuroImage.

[25]  Abraham Z. Snyder,et al.  A default mode of brain function: A brief history of an evolving idea , 2007, NeuroImage.

[26]  Brian B. Avants,et al.  Registration based cortical thickness measurement , 2009, NeuroImage.

[27]  Steen Moeller,et al.  The Human Connectome Project's neuroimaging approach , 2016, Nature Neuroscience.

[28]  Ben Jeurissen,et al.  The role of whole‐brain diffusion MRI as a tool for studying human in vivo cortical segregation based on a measure of neurite density , 2018, Magnetic resonance in medicine.

[29]  J. Allman,et al.  Retinotopic organization of extrastriate cortex in the owl monkey—dorsal and lateral areas , 2015, Visual Neuroscience.

[30]  Nikolaus Weiskopf,et al.  Using high-resolution quantitative mapping of R1 as an index of cortical myelination , 2014, NeuroImage.

[31]  Christophe Lenglet,et al.  Structure tensor analysis of serial optical coherence scanner images for mapping fiber orientations and tractography in the brain , 2015, Journal of biomedical optics.

[32]  M. Graziano,et al.  Location of the polysensory zone in the precentral gyrus of anesthetized monkeys , 2000, Experimental Brain Research.

[33]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[34]  Nikolaus Weiskopf,et al.  Unified segmentation based correction of R1 brain maps for RF transmit field inhomogeneities (UNICORT) , 2011, NeuroImage.

[35]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[36]  David A. Boas,et al.  MRI parcellation of ex vivo medial temporal lobe , 2014, NeuroImage.

[37]  Daniel S. Margulies,et al.  Body Topography Parcellates Human Sensory and Motor Cortex , 2017, Cerebral cortex.

[38]  R. Nieuwenhuys,et al.  A new myeloarchitectonic map of the human neocortex based on data from the Vogt–Vogt school , 2014, Brain Structure and Function.

[39]  R. Turner Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[41]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[42]  I. Aharon,et al.  Three‐dimensional mapping of cortical thickness using Laplace's Equation , 2000, Human brain mapping.

[43]  R. Turner,et al.  Microstructural Parcellation of the Human Cerebral Cortex – From Brodmann's Post-Mortem Map to in vivo Mapping with High-Field Magnetic Resonance Imaging , 2011, Front. Hum. Neurosci..

[44]  P. Cavanagh,et al.  Retinotopy and color sensitivity in human visual cortical area V8 , 1998, Nature Neuroscience.

[45]  Christoph Palm,et al.  Signal enhancement in polarized light imaging by means of independent component analysis , 2010, NeuroImage.

[46]  G. Varoquaux,et al.  Connectivity‐based parcellation: Critique and implications , 2015, Human brain mapping.

[47]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[48]  Ruopeng Wang,et al.  Polarization sensitive optical coherence microscopy for brain imaging. , 2016, Optics letters.

[49]  A. Schleicher,et al.  Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. , 2006, Cerebral cortex.

[50]  Théodore Papadopoulo,et al.  Using diffusion MRI to discriminate areas of cortical grey matter , 2017, NeuroImage.

[51]  Rainer Goebel,et al.  Data on a cytoarchitectonic brain atlas: effects of brain template and a comparison to a multimodal atlas , 2017, Data in brief.

[52]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[53]  K. Deisseroth,et al.  CLARITY for mapping the nervous system , 2013, Nature Methods.

[54]  Robert Turner,et al.  Introduction to the NeuroImage Special Issue: “In vivo Brodmann mapping of the human brain” , 2014, NeuroImage.

[55]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[56]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[57]  Anders M. Dale,et al.  Sequence-independent segmentation of magnetic resonance images , 2004, NeuroImage.

[58]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[59]  K. Amunts,et al.  The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. , 2006, Cerebral cortex.

[60]  Christoph Palm,et al.  A novel approach to the human connectome: Ultra-high resolution mapping of fiber tracts in the brain , 2011, NeuroImage.

[61]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[62]  Timothy Edward John Behrens,et al.  A Bayesian framework for global tractography , 2007, NeuroImage.

[63]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[64]  Shahin Nasr,et al.  Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3 , 2016, The Journal of Neuroscience.

[65]  Martin I. Sereno,et al.  Areas activated during naturalistic reading comprehension overlap topological visual, auditory, and somatotomotor maps , 2016, bioRxiv.

[66]  Karl Zilles,et al.  The human parietal cortex: a novel approach to its architectonic mapping. , 2003, Advances in neurology.

[67]  Junfeng Zhu,et al.  Cross-validation of serial optical coherence scanning and diffusion tensor imaging: A study on neural fiber maps in human medulla oblongata , 2014, NeuroImage.

[68]  Takeharu Nagai,et al.  High-Speed and Scalable Whole-Brain Imaging in Rodents and Primates , 2017, Neuron.

[69]  Christine L. Tardif,et al.  A subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative MRI , 2016, NeuroImage.

[70]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[71]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[72]  David A. Boas,et al.  Blockface histology with optical coherence tomography: A comparison with Nissl staining , 2014, NeuroImage.

[73]  Nicholas Ayache,et al.  Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration , 2010, IEEE Transactions on Medical Imaging.

[74]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[75]  M. Mirmehdi,et al.  16th Annual Meeting of the Organization for Human Brain Mapping , 2010 .

[76]  Katrin Amunts,et al.  Broca's region: Cytoarchitectonic asymmetry and developmental changes , 2003, The Journal of comparative neurology.

[77]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[78]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[79]  F. Dick,et al.  In Vivo Functional and Myeloarchitectonic Mapping of Human Primary Auditory Areas , 2012, The Journal of Neuroscience.

[80]  M. Axer,et al.  Quantitative estimation of 3-D fiber course in gross histological sections of the human brain using polarized light , 2001, Journal of Neuroscience Methods.

[81]  Rudolf Nieuwenhuys,et al.  A map of the human neocortex showing the estimated overall myelin content of the individual architectonic areas based on the studies of Adolf Hopf , 2016, Brain Structure and Function.

[82]  I. H. Coriat,et al.  Histological Studies on the Localization of Cerebral Function , 1906 .

[83]  Katrin Amunts,et al.  Cytoarchitecture of the cerebral cortex—More than localization , 2007, NeuroImage.

[84]  T. Tallinen,et al.  Gyrification from constrained cortical expansion , 2014, Proceedings of the National Academy of Sciences.

[85]  Feng Xia,et al.  Introduction to , 2015, ACM Trans. Multim. Comput. Commun. Appl..

[86]  K. Amunts,et al.  Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps , 2005, Anatomy and Embryology.

[87]  Leah Krubitzer,et al.  Topographic Maps within Brodmann's Area 5 of macaque monkeys. , 2012, Cerebral cortex.

[88]  S. Resnick,et al.  Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging , 2008, Neurobiology of Aging.

[89]  Bruce Fischl,et al.  Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: A possible marker for primary cortex and hemispheric differences , 2006, NeuroImage.

[90]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[91]  S. Bok Der Einflu\ der in den Furchen und Windungen auftretenden Krümmungen der Gro\hirnrinde auf die Rindenarchitektur , 1929 .

[92]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[93]  F. Dick,et al.  Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy† , 2012, Cerebral cortex.

[94]  Junfeng Zhu,et al.  Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography , 2011, NeuroImage.

[95]  R. Turner,et al.  Layer-Specific Intracortical Connectivity Revealed with Diffusion MRI , 2012, Cerebral cortex.

[96]  David A Boas,et al.  Optical coherence tomography visualizes neurons in human entorhinal cortex , 2015, Neurophotonics.

[97]  Pierre-Louis Bazin,et al.  Multi-contrast multi-scale surface registration for improved alignment of cortical areas , 2015, NeuroImage.

[98]  Bruce R. Rosen,et al.  Predicting the location of entorhinal cortex from MRI , 2009, NeuroImage.

[99]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[100]  Lawrence L. Wald,et al.  Surface based analysis of diffusion orientation for identifying architectonic domains in the in vivo human cortex , 2013, NeuroImage.

[101]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.