Nanoparticle and nanorod TiO2 composite photoelectrodes with improved performance.

A novel nanoparticle-nanorod composite TiO(2) photoelectrode is fabricated. A 3.20% efficiency is achieved by using a 2.1 μm-thick as-prepared photoelectrode, which is about 3 times of that obtained by a nanorod array electrode (1.05%). The results demonstrate that the composite nanostructure can take advantage of both fast electron transport (nanorod) and high surface area (nanoparticle).

[1]  F. Di Fonzo,et al.  Hierarchical TiO2 photoanode for dye-sensitized solar cells. , 2010, Nano letters.

[2]  M. Grätzel Dye-sensitized solar cells , 2003 .

[3]  C. Grimes,et al.  Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. , 2008, Nano letters.

[4]  Patrik Schmuki,et al.  TiO2 nanotubes and their application in dye-sensitized solar cells. , 2010, Nanoscale.

[5]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[6]  S. Zakeeruddin,et al.  Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO(2) hollow fibers. , 2010, Nano letters.

[7]  Michael Grätzel,et al.  Perspectives for dye‐sensitized nanocrystalline solar cells , 2000 .

[8]  Kyung‐Won Park,et al.  TiO2 Branched Nanostructure Electrodes Synthesized by Seeding Method for Dye-Sensitized Solar Cells† , 2010 .

[9]  Bin Liu,et al.  Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. , 2009, Journal of the American Chemical Society.

[10]  Yuan Wang,et al.  Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[11]  Fuzhi Huang,et al.  Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. , 2010, ACS nano.

[12]  K. Ho,et al.  An efficient flexible dye-sensitized solar cell with a photoanode consisting of TiO2 nanoparticle-filled and SrO-coated TiO2 nanotube arrays , 2010 .

[13]  Bing Tan,et al.  Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites. , 2006, The journal of physical chemistry. B.

[14]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[15]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[16]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[17]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[18]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[19]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[20]  Taeghwan Hyeon,et al.  Nanorod‐Based Dye‐Sensitized Solar Cells with Improved Charge Collection Efficiency , 2008 .

[21]  M. Durstock,et al.  Fabrication of highly-ordered TiO(2) nanotube arrays and their use in dye-sensitized solar cells. , 2009, Nano letters.

[22]  Dong Young Kim,et al.  Charge Transport Characteristics of High Efficiency Dye-Sensitized Solar Cells Based on Electrospun TiO2 Nanorod Photoelectrodes , 2009 .

[23]  Craig A Grimes,et al.  Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. , 2009, Nature nanotechnology.

[24]  Charles M. Lieber,et al.  Single nanowire photovoltaics. , 2009, Chemical Society reviews.

[25]  Lianmao Peng,et al.  Photoelectric performance of TiO2 nanotube array photoelectrodes cosensitized with CdS/CdSe quantum dots , 2010 .