Electrical modeling of InSb PiN photodiode for avalanche operation

Current density-voltage (J-V) characteristics at 77 K of InSb pin photodiodes, in dark condition and under illumination, were simulated in view to design an avalanche photodiode (APD). Theoretical J-V results were compared with experimental results, performed on InSb diode fabricated by molecular beam epitaxy, in order to validate the parameter values used for the modeling. Then, with the assumption of multiplication induced by the electrons, an optimized separate absorption and multiplication APD structure was defined by theoretically studying the absorber doping level and the multiplication layer thickness. Calculated gain value higher than 10 was achieved at V = −4.5 V. This result shows the potentiality of InSb material as APD device.

[1]  J. Campbell,et al.  Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping , 2012 .

[2]  Antoni Rogalski,et al.  History of infrared detectors , 2012 .

[3]  Steve Grossman,et al.  High operating temperature epi-InSb and XBn-InAsSb photodetectors , 2012, Defense + Commercial Sensing.

[4]  Y. Reibel,et al.  Performance of Mid-Wave Infrared HgCdTe e-Avalanche Photodiodes , 2012, Journal of Electronic Materials.

[5]  A. Kerlain,et al.  Short-Wave Infrared HgCdTe Avalanche Photodiodes , 2012, Journal of Electronic Materials.

[6]  Chee Hing Tan,et al.  High speed InAs electron avalanche photodiodes overcome the conventional gain-bandwidth product limit. , 2011, Optics express.

[7]  Siddhartha Ghosh,et al.  Modeling and simulation of long-wave infrared InAs/GaSb strained layer superlattice photodiodes with different passivants , 2011 .

[8]  V. Srivastav,et al.  HgCdTe avalanche photodiodes: A review , 2011 .

[9]  Johan Rothman,et al.  History-Dependent Impact Ionization Theory Applied to HgCdTe e-APDs , 2011 .

[10]  Chee Hing Tan,et al.  Temperature Dependence of Leakage Current in InAs Avalanche Photodiodes , 2011, IEEE Journal of Quantum Electronics.

[11]  W. Lu,et al.  Optimization of Microlenses for InSb Infrared Focal-Plane Arrays , 2011 .

[12]  A. Rogalski Infrared Detectors, Second Edition , 2010 .

[13]  Weida Hu,et al.  Effects of absorption layer characteristic on spectral photoresponse of mid-wavelength InSb photodiodes , 2010, Numerical Simulation of Optoelectronic Devices.

[14]  Chee Hing Tan,et al.  Impact Ionization in InAs Electron Avalanche Photodiodes , 2010, IEEE Transactions on Electron Devices.

[15]  Philippe Christol,et al.  Characterization of midwave infrared InAs/GaSb superlattice photodiode , 2009 .

[16]  John P. R. David,et al.  Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes , 2008 .

[17]  Jean-Paul Chamonal,et al.  Impulse Response Time Measurements in Hg0.7Cd0.3Te MWIR Avalanche Photodiodes , 2008 .

[18]  Richard Scritchfield,et al.  Gated IR Imaging with 128 × 128 HgCdTe Electron Avalanche Photodiode FPA , 2008 .

[19]  John Marciniec,et al.  HgCdTe MWIR Back-Illuminated Electron-Initiated Avalanche Photodiode Arrays , 2006, SPIE Optics + Photonics.

[20]  Kow-Ming Chang,et al.  Wet Etching Characterization of InSb for Thermal Imaging Applications , 2006 .

[21]  D. Herbert,et al.  Self-consistent 2-D Monte Carlo Simulations of InSb APD , 2005, IEEE Transactions on Electron Devices.

[22]  B. Pejcinovic,et al.  Simulation of INSB Devices using Drift-Diffusion Equations , 2005 .

[23]  C. Schutte,et al.  Evaluation of InSb infrared detectors , 2004 .

[24]  Tim Ashley,et al.  Higher-operating-temperature high-performance infrared focal plane arrays , 2004, SPIE OPTO.

[25]  Michael P. Hasselbeck,et al.  Electron-electron interactions in the nonparabolic conduction band of narrow-gap semiconductors , 1998 .

[26]  Norman,et al.  Midinfrared picosecond spectroscopy studies of Auger recombination in InSb. , 1995, Physical review. B, Condensed matter.

[27]  F. K. Hopkins,et al.  Dark current analysis of InSb photodiodes , 1984 .

[28]  R. G. V. Welzenis,et al.  Impact ionisation inn-Type InSb at 77 K , 1983 .

[29]  J. T. Devreese,et al.  Impact ionisation probability in InSb , 1982 .

[30]  M. Pines,et al.  Recombination processes in intrinsic semiconductors using impact ionization capture cross sections in indium antimonide and mercury cadmium telluride , 1980 .

[31]  C. R. Crowell,et al.  Threshold energy effect on avalanche breakdown voltage in semiconductor junctions , 1975 .

[32]  C. R. Crowell,et al.  Energy-Conservation Considerations in the Characterization of Impact Ionization in Semiconductors , 1972 .

[33]  G. Bauer,et al.  Avalanche breakdown in heavily doped n‐InSb at 77 °K , 1971 .

[34]  R. Baertsch Noise and Multiplication Measurements in InSb Avalanche Photodiodes , 1967 .

[35]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[36]  R. Hall Electron-Hole Recombination in Germanium , 1952 .

[37]  M. Mikhailova,et al.  High-speed Avalanche Photodiodes for the 2–5 µm Spectral Range , 2006 .

[38]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .