A new particle swarm optimization algorithm for noisy optimization problems

We propose a new particle swarm optimization algorithm for problems where objective functions are subject to zero-mean, independent, and identically distributed stochastic noise. While particle swarm optimization has been successfully applied to solve many complex deterministic nonlinear optimization problems, straightforward applications of particle swarm optimization to noisy optimization problems are subject to failure because the noise in objective function values can lead the algorithm to incorrectly identify positions as the global/personal best positions. Instead of having the entire swarm follow a global best position based on the sample average of objective function values, the proposed new algorithm works with a set of statistically global best positions that include one or more positions with objective function values that are statistically equivalent, which is achieved using a combination of statistical subset selection and clustering analysis. The new PSO algorithm can be seamlessly integrated with adaptive resampling procedures to enhance the capability of PSO to cope with noisy objective functions. Numerical experiments demonstrate that the new algorithm is able to consistently find better solutions than the canonical particle swarm optimization algorithm in the presence of stochastic noise in objective function values with different resampling procedures.

[1]  G. Rudolph Evolutionary Search under Partially Ordered Fitness Sets , 2001 .

[2]  L. Shepp Probability Essentials , 2002 .

[3]  Yizhen Zhang,et al.  Particle swarm optimization for unsupervised robotic learning , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[4]  Barry L. Nelson,et al.  Selecting the best system: theory and methods , 2003, Proceedings of the 2003 Winter Simulation Conference, 2003..

[5]  Hui Xiao,et al.  Simulation optimization using genetic algorithms with optimal computing budget allocation , 2014, Simul..

[6]  Mengjie Zhang,et al.  Population statistics for particle swarm optimization: Resampling methods in noisy optimization problems , 2014, Swarm Evol. Comput..

[7]  O. Geoffrey Okogbaa,et al.  A review of: “Adaptive Sampling” S. Thompson and G. Seber Wiley, 1996 , 1997 .

[8]  Reha Uzsoy,et al.  Production planning for semiconductor manufacturing via simulation optimization , 2011, Proceedings of the 2011 Winter Simulation Conference (WSC).

[9]  Mark Johnston,et al.  Population statistics for particle swarm optimization: Single-evaluation methods in noisy optimization problems , 2015, Soft Comput..

[10]  Paul Bratley,et al.  A guide to simulation , 1983 .

[11]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[12]  Shiyuan Yang,et al.  Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm , 2007, Inf. Process. Lett..

[13]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[14]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[15]  Chun-Hung Chen,et al.  Simulation Budget Allocation for Further Enhancing the Efficiency of Ordinal Optimization , 2000, Discret. Event Dyn. Syst..

[16]  Sandor Markon,et al.  Threshold selection, hypothesis tests, and DOE methods , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[17]  R. Lyndon While,et al.  Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[18]  Jie Xu,et al.  Drug Resistance or Re-Emergence? Simulating Equine Parasites , 2014, TOMC.

[19]  Xiaodong Li,et al.  This article has been accepted for inclusion in a future issue. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1 Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation , 2022 .

[20]  J. Fitzpatrick,et al.  Genetic Algorithms in Noisy Environments , 2005, Machine Learning.

[21]  Thomas Bartz-Beielstein,et al.  Particle Swarm Optimization and Sequential Sampling in Noisy Environments , 2007, Metaheuristics.

[22]  Y. Volkan Pehlivanoglu,et al.  A New Particle Swarm Optimization Method Enhanced With a Periodic Mutation Strategy and Neural Networks , 2013, IEEE Transactions on Evolutionary Computation.

[23]  Xiaodong Li,et al.  Enhancing the robustness of a speciation-based PSO , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[24]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[25]  Andrew W. Moore,et al.  Hoeffding Races: Accelerating Model Selection Search for Classification and Function Approximation , 1993, NIPS.

[26]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[27]  Mark Johnston,et al.  Optimal computing budget allocation in particle swarm optimization , 2013, GECCO '13.

[28]  Günter Rudolph,et al.  A partial order approach to noisy fitness functions , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[29]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[30]  Loo Hay Lee,et al.  Efficient Simulation Budget Allocation for Selecting an Optimal Subset , 2008, INFORMS J. Comput..

[31]  Andries Petrus Engelbrecht,et al.  Measuring exploration/exploitation in particle swarms using swarm diversity , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[32]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[33]  A. P. Engelbrecht,et al.  Particle Swarm Optimization: Global Best or Local Best? , 2013, 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence.

[34]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[35]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[36]  Jun Zhang,et al.  A Novel Set-Based Particle Swarm Optimization Method for Discrete Optimization Problems , 2010, IEEE Transactions on Evolutionary Computation.

[37]  Mohamed E. El-Hawary,et al.  A Survey of Particle Swarm Optimization Applications in Electric Power Systems , 2009, IEEE Transactions on Evolutionary Computation.

[38]  Jie Xu,et al.  Industrial strength COMPASS: A comprehensive algorithm and software for optimization via simulation , 2010, TOMC.

[39]  Barry L. Nelson,et al.  A framework for simulation-optimization software , 2003 .

[40]  Mark Johnston,et al.  Population statistics for particle swarm optimization: Hybrid methods in noisy optimization problems , 2015, Swarm Evol. Comput..

[41]  Jose Luis Fernandez-Marquez,et al.  An evaporation mechanism for dynamic and noisy multimodal optimization , 2009, GECCO.

[42]  Donald C. Wunsch,et al.  Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization , 2007, Neural Networks.

[43]  Yongling Zheng,et al.  On the convergence analysis and parameter selection in particle swarm optimization , 2003, Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.03EX693).

[44]  Alcherio Martinoli,et al.  A distributed noise-resistant Particle Swarm Optimization algorithm for high-dimensional multi-robot learning , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[45]  Warren B. Powell,et al.  The Knowledge-Gradient Policy for Correlated Normal Beliefs , 2009, INFORMS J. Comput..

[46]  Shang-Jeng Tsai,et al.  Cluster Guide Particle Swarm Optimization (CGPSO) for Underdetermined Blind Source Separation With Advanced Conditions , 2011, IEEE Transactions on Evolutionary Computation.

[47]  Jürgen Branke,et al.  Selection in the Presence of Noise , 2003, GECCO.

[48]  Chrysostomos D. Stylios,et al.  Integrating particle swarm optimization with reinforcement learning in noisy problems , 2012, GECCO '12.

[49]  H. Yoshida,et al.  A particle swarm optimization for reactive power and voltage control considering voltage security assessment , 1999, 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.01CH37194).

[50]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[51]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[52]  Larry Wasserman,et al.  All of Statistics , 2004 .

[53]  David E. Goldberg,et al.  Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise , 1996, Evolutionary Computation.

[54]  Loo Hay Lee,et al.  Memetic Algorithm for Real-Time Combinatorial Stochastic Simulation Optimization Problems With Performance Analysis , 2013, IEEE Transactions on Cybernetics.

[55]  Chandrasekhar Nataraj,et al.  Application of particle swarm optimization and proximal support vector machines for fault detection , 2009, Swarm Intelligence.

[56]  Stephen E. Chick,et al.  New Two-Stage and Sequential Procedures for Selecting the Best Simulated System , 2001, Oper. Res..

[57]  Csaba Szepesvári,et al.  Exploration-exploitation tradeoff using variance estimates in multi-armed bandits , 2009, Theor. Comput. Sci..

[58]  Garrett J. van Ryzin,et al.  Stocking Retail Assortments Under Dynamic Consumer Substitution , 2001, Oper. Res..

[59]  Andries Petrus Engelbrecht,et al.  Set-based particle swarm optimization applied to the multidimensional knapsack problem , 2012, Swarm Intelligence.

[60]  Warren B. Powell,et al.  A Knowledge-Gradient Policy for Sequential Information Collection , 2008, SIAM J. Control. Optim..

[61]  Ling Wang,et al.  Particle swarm optimization for function optimization in noisy environment , 2006, Appl. Math. Comput..

[62]  Jose Luis Fernandez-Marquez,et al.  Adapting Particle Swarm Optimization in dynamic and noisy environments , 2010, IEEE Congress on Evolutionary Computation.

[63]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[64]  Peter Auer,et al.  Using Confidence Bounds for Exploitation-Exploration Trade-offs , 2003, J. Mach. Learn. Res..

[65]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[66]  Stuart Barber,et al.  All of Statistics: a Concise Course in Statistical Inference , 2005 .

[67]  P. Suganthan Particle swarm optimiser with neighbourhood operator , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[68]  Xiaodong Li,et al.  Benchmark Functions for the CEC'2010 Special Session and Competition on Large-Scale , 2009 .

[69]  J. Kennedy,et al.  Neighborhood topologies in fully informed and best-of-neighborhood particle swarms , 2003, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[70]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[71]  Alcherio Martinoli,et al.  Distributed Particle Swarm Optimization using Optimal Computing Budget Allocation for multi-robot learning , 2015, 2015 IEEE Congress on Evolutionary Computation (CEC).

[72]  P. Whittle Multi‐Armed Bandits and the Gittins Index , 1980 .

[73]  Erick Cantú-Paz,et al.  Adaptive Sampling for Noisy Problems , 2004, GECCO.

[74]  Barry L. Nelson,et al.  Chapter 17 Selecting the Best System , 2006, Simulation.

[75]  R. Weber On the Gittins Index for Multiarmed Bandits , 1992 .

[76]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[77]  Philippe Flajolet,et al.  Adaptive Sampling , 1997 .

[78]  Juan Luis Fern Stochastic Stability Analysis of the Linear Continuous and Discrete PSO Models , 2011 .

[79]  T. Back,et al.  Thresholding-a selection operator for noisy ES , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[80]  Ke Tang,et al.  History-Based Topological Speciation for Multimodal Optimization , 2015, IEEE Transactions on Evolutionary Computation.

[81]  Loo Hay Lee,et al.  Simulation optimization using the Particle Swarm Optimization with optimal computing budget allocation , 2011, Proceedings of the 2011 Winter Simulation Conference (WSC).