A 2-D anatomic breast ductal computer phantom for ultrasonic imaging

Most breast cancers (85%) originate from the epithelium and develop first in the ductolobular structures. In screening procedures, the mammary epithelium should therefore be investigated first by the performing of an anatomically guided examination. For this purpose (mass screening, surgical guidance), we developed a two-dimensional anatomic phantom corresponding to an axial cross section of the ductolobular structures, which makes it possible to better understand the interactions between the breast composition and ultrasound. The various constitutive tissues were modeled as a random inhomogeneous continuum with density and sound speed fluctuations. Ultrasonic pulse propagation through the breast computer phantom was simulated using a finite element time domain method (the phantom can be used with other propagation codes). The simulated ductal echographic image is compared with the ductal tomographic (DT) reconstruction. The preliminary results obtained show that the DT method is more satisfactory in terms of both the contrast and the resolution.

[1]  R C Waag,et al.  Measurement and correction of ultrasonic pulse distortion produced by the human breast. , 1995, The Journal of the Acoustical Society of America.

[2]  S. Mensah,et al.  Near-Field Diffraction Tomography , 2002, Ultrasonic imaging.

[3]  Chrysoula Tsogka Modélisation mathématique et numérique de la propagation des ondes élastiques tridimensionnelles dans des milieux fissurés , 1999 .

[4]  Forrest Anderson Active Imaging Green’s Function , 1992 .

[5]  F. Dunn,et al.  Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. , 1978, The Journal of the Acoustical Society of America.

[6]  T. Krouskop,et al.  Elastic Moduli of Breast and Prostate Tissues under Compression , 1998, Ultrasonic imaging.

[7]  B. Magnússon,et al.  TUMOURS IN ICELAND , 1979, Acta pathologica et microbiologica Scandinavica. Section A, Pathology.

[8]  James F. Greenleaf,et al.  CLINICAL IMAGING WITH TRANSMISSIVE ULTRASONIC COMPUTERIZED TOMOGRAPHY , 1981 .

[9]  G Kossoff,et al.  Average velocity of ultrasound in the human female breast. , 1973, The Journal of the Acoustical Society of America.

[11]  D C Sullivan,et al.  Two dimensional ultrasonic beam distortion in the breast: in vivo measurements and effects. , 1992, Ultrasonic imaging.

[12]  L. Frizzell,et al.  Shear properties of mammalian tissues at low megahertz frequencies. , 1976, The Journal of the Acoustical Society of America.

[13]  D. R. White,et al.  The composition of body tissues. , 1986, The British journal of radiology.

[14]  Shira L. Broschat,et al.  Regular ArticleFDTD Simulations for Ultrasound Propagation in a 2-D Breast Model , 1996 .

[15]  Gregory Beylkin,et al.  Linearized inverse scattering problems in acoustics and elasticity , 1990 .

[16]  Ó. Bjarnason,et al.  Tumours in Iceland 10. Malignant tumours of the female breast , 1988, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[17]  T. D. Mast,et al.  Simulation of ultrasonic pulse propagation through the abdominal wall. , 1997, The Journal of the Acoustical Society of America.

[18]  Chrysoula Tsogka,et al.  Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic hete , 1998 .

[19]  William D. O'Brien,et al.  Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging , 2004, IEEE Transactions on Medical Imaging.

[20]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[21]  Forrest Anderson,et al.  Active Imaging Analysis via Ellipsoidal Projections , 1995 .

[22]  S Mensah,et al.  Circular Antenna for Breast Ultrasonic Diffraction Tomography , 2002, Ultrasonic imaging.

[23]  E. Madsen,et al.  Ultrasonic shear wave properties of soft tissues and tissuelike materials. , 1983, The Journal of the Acoustical Society of America.

[24]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[25]  S. Mensah,et al.  Enhanced compressibility tomography , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  D. Borup,et al.  Full-Wave, Non-Linear, Inverse Scattering , 2007 .

[27]  R. F. Wagner,et al.  Describing small-scale structure in random media using pulse-echo ultrasound. , 1990, The Journal of the Acoustical Society of America.

[28]  S. Norton,et al.  Ultrasonic Reflectivity Tomography: Reconstruction with Circular Transducer Arrays , 1979 .

[29]  William D O'Brien,et al.  Characterization of tissue microstructure using ultrasonic backscatter: theory and technique for optimization using a Gaussian form factor. , 2002, The Journal of the Acoustical Society of America.

[30]  Helmut Ermert,et al.  Ultrasound Spiral Computed Tomography for Differential Diagnosis of Breast Tumors Using a Conventional Ultrasound System , 2004 .

[31]  S L Broschat,et al.  FDTD simulations for ultrasound propagation in a 2-D breast model. , 1996, Ultrasonic imaging.

[32]  S Mensah,et al.  Diffraction tomography: a geometrical distortion free procedure. , 2004, Ultrasonics.

[33]  K. Richter,et al.  Clinical amplitude/velocity reconstructive imaging (CARI)--a new sonographic method for detecting breast lesions. , 1995, The British journal of radiology.

[34]  Gregory Beylkin,et al.  Discrete radon transform , 1987, IEEE Trans. Acoust. Speech Signal Process..

[35]  Rainer Stotzka,et al.  Medical imaging by ultrasound computer tomography , 2002, SPIE Medical Imaging.

[36]  D. A. Palmer,et al.  High‐speed data acquisition in a diffraction tomography system employing large‐scale toroidal arrays , 1997 .

[37]  F. Foster,et al.  The Ultrasound Macroscope: Initial Studies of Breast Tissue , 1984 .

[38]  Patrick Joly,et al.  An Analysis of New Mixed Finite Elements for the Approximation of Wave Propagation Problems , 2000, SIAM J. Numer. Anal..

[39]  E. Feleppa,et al.  Relationship of Ultrasonic Spectral Parameters to Features of Tissue Microstructure , 1987, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[40]  Luděk Klimeš,et al.  Correlation Functions of Random Media , 2002 .