Structure of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules in the eukaryotic replisome

[1]  S. Boulton,et al.  POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin Integrity during DNA Replication , 2018, Molecular cell.

[2]  R. Xu,et al.  A mechanism for preventing asymmetric histone segregation onto replicating DNA strands , 2018, Science.

[3]  Alessandro Costa,et al.  The mechanism of eukaryotic CMG helicase activation , 2018, Nature.

[4]  J. Diffley,et al.  Cryo-EM structure of a licensed DNA replication origin , 2017, Nature Communications.

[5]  R. Martienssen,et al.  Coordinated regulation of heterochromatin inheritance by Dpb3–Dpb4 complex , 2017, Proceedings of the National Academy of Sciences.

[6]  B. Stillman,et al.  Cryo-EM structure of Mcm2-7 double hexamer on DNA suggests a lagging-strand DNA extrusion model , 2017, Proceedings of the National Academy of Sciences.

[7]  J. Diffley,et al.  Cdt1 stabilizes an open MCM ring for helicase loading , 2017, Nature Communications.

[8]  J. Diffley,et al.  CMG–Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome , 2017, Proceedings of the National Academy of Sciences.

[9]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[10]  M. Botchan,et al.  Mechanisms for initiating cellular DNA replication , 2017, Science.

[11]  Hao Wu,et al.  Open-ringed structure of the Cdt1–Mcm2–7 complex as a precursor of the MCM double hexamer , 2017, Nature Structural &Molecular Biology.

[12]  S. Bell,et al.  Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase , 2017, Genes & development.

[13]  M. O’Donnell,et al.  Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation , 2017, Proceedings of the National Academy of Sciences.

[14]  J. Diffley,et al.  How the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication , 2017, Molecular cell.

[15]  Wolfgang Baumeister,et al.  Using the Volta phase plate with defocus for cryo-EM single particle analysis , 2016, bioRxiv.

[16]  L. Pellegrini,et al.  New Insights into the Mechanism of DNA Duplication by the Eukaryotic Replisome. , 2016, Trends in biochemical sciences.

[17]  Rafael Fernandez-Leiro,et al.  A pipeline approach to single-particle processing in RELION , 2016, bioRxiv.

[18]  Sjors H. W. Scheres,et al.  Unravelling biological macromolecules with cryo-electron microscopy , 2016, Nature.

[19]  S. Bell,et al.  Chromosome Duplication in Saccharomyces cerevisiae , 2016, Genetics.

[20]  Alessandro Costa,et al.  The MCM Helicase Motor of the Eukaryotic Replisome. , 2016, Journal of molecular biology.

[21]  J. Diffley,et al.  MCM: one ring to rule them all. , 2016, Current opinion in structural biology.

[22]  J. Diffley,et al.  Phosphopeptide binding by Sld3 links Dbf4‐dependent kinase to MCM replicative helicase activation , 2016, The EMBO journal.

[23]  Jin Chuan Zhou,et al.  Cryo-EM structures of the eukaryotic replicative helicase bound to a translocation substrate , 2016, Nature Communications.

[24]  M. O’Donnell,et al.  Structure of the eukaryotic replicative CMG helicase and pumpjack motion , 2016, Nature Structural &Molecular Biology.

[25]  B. Chait,et al.  The architecture of a eukaryotic replisome , 2015, Nature Structural &Molecular Biology.

[26]  Y. Shirakihara,et al.  The quaternary structure of the eukaryotic DNA replication proteins Sld7 and Sld3. , 2015, Acta crystallographica. Section D, Biological crystallography.

[27]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[28]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[29]  T. Tahirov,et al.  Crystal Structure of the Human Pol α B Subunit in Complex with the C-terminal Domain of the Catalytic Subunit* , 2015, The Journal of Biological Chemistry.

[30]  J. Diffley,et al.  Regulated Eukaryotic DNA Replication Origin Firing with Purified Proteins , 2015, Nature.

[31]  M. Botchan,et al.  Cdc45 (cell division cycle protein 45) guards the gate of the Eukaryote Replisome helicase stabilizing leading strand engagement , 2015, Proceedings of the National Academy of Sciences.

[32]  M. O’Donnell,et al.  CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication , 2014, Proceedings of the National Academy of Sciences.

[33]  J. Diffley,et al.  Origin Licensing Requires ATP Binding and Hydrolysis by the MCM Replicative Helicase , 2014, Molecular cell.

[34]  S. Bell,et al.  Multiple functions for Mcm2-7 ATPase motifs during replication initiation. , 2014, Molecular cell.

[35]  E. Johansson,et al.  Structural basis for processive DNA synthesis by yeast DNA polymerase ɛ , 2013, Nature Structural &Molecular Biology.

[36]  J. Berger,et al.  Mechanisms for initiating cellular DNA replication. , 2013, Annual review of biochemistry.

[37]  K. Labib,et al.  Dpb2 Integrates the Leading-Strand DNA Polymerase into the Eukaryotic Replisome , 2013, Current Biology.

[38]  Rubben Torella,et al.  Mechanism for priming DNA synthesis by yeast DNA Polymerase α , 2013, eLife.

[39]  E. Johansson,et al.  The C-terminus of Dpb2 is required for interaction with Pol2 and for cell viability , 2012, Nucleic acids research.

[40]  Tatsuro S. Takahashi,et al.  DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast , 2012, Molecular biology of the cell.

[41]  M. Botchan,et al.  ATP-dependent conformational dynamics underlie the functional asymmetry of the replicative helicase from a minimalist eukaryote , 2012, Proceedings of the National Academy of Sciences.

[42]  Chris P. Ponting,et al.  Cdc45: the missing RecJ ortholog in eukaryotes? , 2011, Bioinform..

[43]  J. Berger,et al.  The nuts and bolts of ring-translocase structure and mechanism. , 2011, Current opinion in structural biology.

[44]  M. Botchan,et al.  The structural basis for MCM2–7 helicase activation by GINS and Cdc45 , 2011, Nature Structural &Molecular Biology.

[45]  Alan Poulter,et al.  One ring to rule them all , 2010 .

[46]  K. Labib How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? , 2010, Genes & development.

[47]  S. MacNeill,et al.  The eukaryotic replicative DNA polymerases take shape. , 2010, Trends in biochemical sciences.

[48]  H. Araki,et al.  CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol (epsilon}, and GINS in budding yeast. , 2010, Genes & development.

[49]  M. Botchan,et al.  Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. , 2010, Molecular cell.

[50]  Vincent B. Chen,et al.  PHENIX: a comprehensive Python-based system for macromolecular structure solution , 2010, Acta crystallographica. Section D, Biological crystallography.

[51]  Jingchuan Sun,et al.  A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication , 2009, Proceedings of the National Academy of Sciences.

[52]  J. Diffley,et al.  Eukaryotic DNA replication control: lock and load, then fire. , 2009, Current opinion in cell biology.

[53]  J. Diffley,et al.  Concerted Loading of Mcm2–7 Double Hexamers around DNA during DNA Replication Origin Licensing , 2009, Cell.

[54]  Eugene V Koonin,et al.  Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors , 2009, Biology Direct.

[55]  Sabine Pruggnaller,et al.  A visualization and segmentation toolbox for electron microscopy. , 2008, Journal of structural biology.

[56]  H. Pospiech,et al.  The solution structure of the amino-terminal domain of human DNA polymerase ε subunit B is homologous to C-domains of AAA+ proteins , 2008, Nucleic acids research.

[57]  S. Bell,et al.  Subunit Organization of Mcm2-7 and the Unequal Role of Active Sites in ATP Hydrolysis and Viability , 2008, Molecular and Cellular Biology.

[58]  Hiroyuki Araki,et al.  CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast , 2007, Nature.

[59]  J. Diffley,et al.  Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast , 2007, Nature.

[60]  L. Joshua-Tor,et al.  Mechanism of DNA translocation in a replicative hexameric helicase , 2006, Nature.

[61]  S. Bell,et al.  Organization of the archaeal MCM complex on DNA and implications for the helicase mechanism , 2005, Nature Structural &Molecular Biology.

[62]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[63]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[64]  A. Sugino,et al.  [DNA polymerase epsilon]. , 2002, Seikagaku. The Journal of Japanese Biochemical Society.

[65]  Wenyi Feng,et al.  Schizosaccharomyces pombe Cells Lacking the Amino-Terminal Catalytic Domains of DNA Polymerase Epsilon Are Viable but Require the DNA Damage Checkpoint Control , 2001, Molecular and Cellular Biology.

[66]  D. Levy,et al.  Analysis of the Essential Functions of the C-terminal Protein/Protein Interaction Domain of Saccharomyces cerevisiae pol ε and Its Unexpected Ability to Support Growth in the Absence of the DNA Polymerase Domain* , 1999, The Journal of Biological Chemistry.

[67]  M. O’Donnell,et al.  Structure of the eukaryotic replicative CMG helicase suggests a pumpjack motion for translocation , 2016 .

[68]  E. Johansson,et al.  DNA polymerase ε. , 2012, Sub-cellular biochemistry.

[69]  Friedrich Förster,et al.  Visual proteomics. , 2010, Methods in enzymology.

[70]  Friedrich Förster,et al.  Structure determination in situ by averaging of tomograms. , 2007, Methods in cell biology.

[71]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[72]  Karen N. Allen,et al.  research papers Acta Crystallographica Section D Biological , 2003 .