Nanostructure morphology variation modeling and estimation for nanomanufacturing process yield improvement

Nanomanufacturing is critical to the future growth of U.S. manufacturing. Yet the process yield of current nanodevices is typically 10% or less. Particularly in nanomaterials growth, there may exist large variability across the sites on a substrate, which could lead to variability in properties. Essential to the reduction of variability is to mathematically describe the spatial variation of nanostructure. This research therefore aims at a method of modeling and estimating nanostructure morphology variation for process yield improvement. This method consists of (1) morphology variation modeling based on Gaussian Markov random field (GMRF) theory, and (2) maximum likelihood estimation (MLE) of morphology variation model based on measurement data. The research challenge lies in the proper definition and estimation of the interactions among neighboring nanostructures. To model morphology variation, nanostructures on all sites are collectively described as a GMRF. The morphology variation model serves for the space-time growth model of nanostructures. The probability structure of the GMRF is specified by a so-called simultaneous autoregressive scheme, which defines the neighborhood systems for any site on a substrate. The neighborhood system characterizes the interactions among adjacent nanostructures by determining neighbors and their influence on a given site in terms of conditional auto-regression. The conditional

[1]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[2]  Wei Lu,et al.  TOPICAL REVIEW: Semiconductor nanowires , 2006 .

[3]  Way Kuo Challenges Related to Reliability in Nano Electronics , 2006 .

[4]  R. M. Tromp,et al.  The influence of the surface migration of gold on the growth of silicon nanowires , 2006, Nature.

[5]  Qiang Huang,et al.  Physics-driven Bayesian hierarchical modeling of the nanowire growth process at each scale , 2010 .

[6]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[7]  Hashem Rafii-Tabar,et al.  Computational physics of carbon nanotubes , 2007 .

[8]  Suk Joo Bae,et al.  Statistical Models for Hot Electron Degradation in Nano-Scaled MOSFET Devices , 2007, IEEE Transactions on Reliability.

[9]  Craig A Grimes,et al.  Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth. , 2003, Journal of nanoscience and nanotechnology.

[10]  Janet E. Jones On the determination of molecular fields. —II. From the equation of state of a gas , 1924 .

[11]  Hongkun Park,et al.  Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. , 2002, Journal of the American Chemical Society.

[12]  Charles M Lieber,et al.  Semiconductor nanowires , 2006 .

[13]  P. Ajayan,et al.  Multifunctional composites using reinforced laminae with carbon-nanotube forests , 2006, Nature materials.

[14]  M. Benoit,et al.  Signature of small rings in the Raman spectra of normal and compressed amorphous silica: A combined classical and ab initio study , 2003, cond-mat/0308164.

[15]  Hans Nørgaard Hansen,et al.  Investigation on the traceability of three dimensional scanning electron microscope measurements based on the stereo-pair technique , 2005 .

[16]  Tao Yuan,et al.  Breakdown phenomena of zirconium-doped hafnium oxide high-k stack with an inserted interface layer , 2006 .

[17]  H. Ruda,et al.  Growth and photoluminescence characteristics of AlGaAs nanowires , 2004 .

[18]  Masayuki Futamata,et al.  Elastic scattering and emission correlated with single‐molecule SERS , 2005 .

[19]  Tirthankar Dasgupta,et al.  Statistical Modeling and Analysis for Robust Synthesis of Nanostructures , 2008 .

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[22]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[23]  Gerald J. Meyer,et al.  Biological applications of high aspect ratio nanoparticles , 2004 .

[24]  Seiji Takeda,et al.  Growth rate of silicon nanowires , 2005 .

[25]  Seiya Kasai,et al.  Hexagonal binary decision diagram quantum logic circuits using Schottky in-plane and wrap-gate control of GaAs and InGaAs nanowires , 2001 .

[26]  Chih-Ming Hsu,et al.  Root growth of multi-wall carbon nanotubes by MPCVD 1 1 This paper was presented at the ICMCTF Conference 2003, San Diego, California, 23 April–2 May 2003. , 2005 .

[27]  Xiangfeng Duan,et al.  General Synthesis of Compound Semiconductor Nanowires. , 2000 .

[28]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.

[29]  G. Park,et al.  Ruthenium Oxide Nanotube Arrays Fabricated by Atomic Layer Deposition Using a Carbon Nanotube Template , 2003 .

[30]  Polman,et al.  Measuring and modifying the spontaneous emission rate of erbium near an interface. , 1995, Physical review letters.

[31]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[32]  Agus Sudjianto,et al.  Blind Kriging: A New Method for Developing Metamodels , 2008 .

[33]  N. V. Sibirev,et al.  Kinetic model of the growth of nanodimensional whiskers by the vapor-liquid-crystal mechanism , 2004 .

[34]  S. Bhansali,et al.  Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10 , 2008, Nanotechnology.

[35]  T. Venkatesan,et al.  Preparation of Y‐Ba‐Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material , 1987 .

[36]  Xiangfeng Duan,et al.  High-performance thin-film transistors using semiconductor nanowires and nanoribbons , 2003, Nature.

[37]  Synthesis of aligned GaN nanorods on Si (111) by molecular beam epitaxy , 2005 .

[38]  J. Ziegler The stopping and range of ions in solids vol 1 : The stopping and ranges of ions in matter , 2013 .

[39]  T. Shahbazyan,et al.  Surface-enhanced Raman scattering on the nanoscale : a microscopic approach , 2006 .

[40]  A. Polman,et al.  Förster transfer and the local optical density of states in erbium-doped silica , 2005 .

[41]  A. Makarovski,et al.  Efficient CVD Growth of Single-Walled Carbon Nanotubes on Surfaces Using Carbon Monoxide Precursor , 2002 .

[42]  Zhe Jiang,et al.  Spatial Statistics , 2013 .

[43]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[44]  V. Dubrovskii,et al.  Growth rate of a crystal facet of arbitrary size and growth kinetics of vertical nanowires. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  N. V. Sibirev,et al.  Growth of GaAs nanoscale whiskers by magnetron sputtering deposition , 2006 .

[46]  D. Kashchiev,et al.  Unified description of the rate of nucleation-mediated crystal growth , 1989 .

[47]  P. Sekhar Nanomanufacturing of silica nanowires: Synthesis, characterization and applications , 2008 .

[48]  Jaegab Lee,et al.  Formation of TiO2 and ZrO2 Nanotubes Using Atomic Layer Deposition with Ultraprecise Control of the Wall Thickness , 2004 .

[49]  A. Chernov Growth kinetics and capture of impurities during gas phase crystallization , 1977 .

[50]  J. Spanier,et al.  Single‐Crystalline Barium Titanate Nanowires , 2003 .

[51]  G. Piazzesi Photogrammetry with the scanning electron microscope , 1973 .

[52]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[53]  Dapeng Yu,et al.  High-quality GaN nanowires synthesized using a CVD approach , 2002 .

[54]  Elton Graugnard,et al.  Large-Scale Fabrication of Ordered Nanobowl Arrays , 2004 .

[55]  Charles M. Lieber,et al.  Synthesis of p-Type Gallium Nitride Nanowires for Electronic and Photonic Nanodevices , 2003 .

[56]  J. Hirth,et al.  Kinetics of Diffusion-Controlled Whisker Growth , 1964 .

[57]  K. Kolasinski Catalytic growth of nanowires: Vapor–liquid–solid, vapor–solid–solid, solution–liquid–solid and solid–liquid–solid growth , 2006 .

[58]  D. Ullmann,et al.  Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Carl P. Tripp,et al.  Template‐Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well‐Controlled Dimensions on Substrates , 2004 .

[60]  Yue Kuo,et al.  Dielectric relaxation and breakdown detection of doped tantalum oxide high-k thin films , 2004 .

[61]  E. I. Givargizov Fundamental aspects of VLS growth , 1975 .