p65-Dependent production of interleukin-1β by osteolytic prostate cancer cells causes an induction of chemokine expression in osteoblasts.

[1]  C. Dinarello,et al.  Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. , 2011, Blood.

[2]  S. Yano,et al.  Enhancement of osteoclastogenic activity in osteolytic prostate cancer cells by physical contact with osteoblasts , 2011, British Journal of Cancer.

[3]  Y. Iwakura,et al.  IL-1 plays an important role in the bone metabolism under physiological conditions. , 2010, International immunology.

[4]  A. Jemal,et al.  Cancer Statistics, 2010 , 2010, CA: a cancer journal for clinicians.

[5]  J. Heersche,et al.  IL‐1α and IL‐1β have different effects on formation and activity of large osteoclasts , 2010, Journal of cellular biochemistry.

[6]  A. Richmond,et al.  Chemokines and chemokine receptors: new insights into cancer-related inflammation. , 2010, Trends in molecular medicine.

[7]  M. Amling,et al.  Osteolytic prostate cancer cells induce the expression of specific cytokines in bone-forming osteoblasts through a Stat3/5-dependent mechanism. , 2010, Bone.

[8]  P. Allavena,et al.  The chemokine system in cancer biology and therapy. , 2010, Cytokine & growth factor reviews.

[9]  U. Broeckel,et al.  An autoinflammatory disease due to homozygous deletion of the IL1RN locus. , 2009, The New England journal of medicine.

[10]  Do-Hee Kim,et al.  Piceatannol Inhibits Phorbol Ester-Induced NF-κ B Activation and COX-2 Expression in Cultured Human Mammary Epithelial Cells , 2009, Nutrition and cancer.

[11]  J. Chirgwin,et al.  The critical role of the bone microenvironment in cancer metastases , 2009, Molecular and Cellular Endocrinology.

[12]  S. Rai,et al.  Serum CXCL13 positively correlates with prostatic disease, prostate-specific antigen and mediates prostate cancer cell invasion, integrin clustering and cell adhesion. , 2009, Cancer letters.

[13]  P. Gregersen,et al.  An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. , 2009, The New England journal of medicine.

[14]  G. MacLennan,et al.  Il‐1β‐induced post‐transition effect of NF‐kappaB provides time‐dependent wave of signals for initial phase of intrapostatic inflammation , 2009, The Prostate.

[15]  H. Hsieh,et al.  IL‐1β induces urokinse‐plasminogen activator expression and cell migration through PKCα, JNK1/2, and NF‐κB in A549 cells , 2009, Journal of cellular physiology.

[16]  J. Smolen,et al.  Interleukin-1 is essential for systemic inflammatory bone loss , 2009, Annals of the rheumatic diseases.

[17]  Matthew S. Hayden,et al.  New regulators of NF-κB in inflammation , 2008, Nature Reviews Immunology.

[18]  P. Allavena,et al.  Cancer-related inflammation , 2008, Nature.

[19]  J. Chirgwin,et al.  Molecular biology of bone metastasis. , 2008, Molecular cancer therapeutics.

[20]  B. Fehse,et al.  A multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors for functional gene analysis. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[21]  A. Chinnaiyan,et al.  CXCL5 promotes prostate cancer progression. , 2008, Neoplasia.

[22]  A. Angelucci,et al.  Arachidonic acid modulates the crosstalk between prostate carcinoma and bone stromal cells. , 2008, Endocrine-related cancer.

[23]  G. Kalliolias,et al.  The future of the IL-1 receptor antagonist anakinra: from rheumatoid arthritis to adult-onset Still's disease and systemic-onset juvenile idiopathic arthritis , 2008 .

[24]  Matthew J. Craig,et al.  Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. , 2007, Cancer research.

[25]  J. Heersche,et al.  Increased expression of activating factors in large osteoclasts could explain their excessive activity in osteolytic diseases , 2007, Journal of cellular biochemistry.

[26]  J. Kalinowski,et al.  RANKL-stimulated osteoclast-like cell formation in vitro is partially dependent on endogenous interleukin-1 production. , 2006, Bone.

[27]  T. Yoneda,et al.  Crosstalk between cancer cells and bone microenvironment in bone metastasis. , 2005, Biochemical and biophysical research communications.

[28]  Liang Cheng,et al.  Nuclear Factor-κB Is Constitutively Activated in Prostate Cancer In vitro and Is Overexpressed in Prostatic Intraepithelial Neoplasia and Adenocarcinoma of the Prostate , 2004, Clinical Cancer Research.

[29]  F. Balkwill Cancer and the chemokine network , 2004, Nature Reviews Cancer.

[30]  L. Lessard,et al.  NF‐κB nuclear localization and its prognostic significance in prostate cancer , 2003 .

[31]  Sanjeev Banerjee,et al.  Piceatannol Inhibits TNF-Induced NF-κB Activation and NF-κB-Mediated Gene Expression Through Suppression of IκBα Kinase and p65 Phosphorylation1 , 2002, The Journal of Immunology.

[32]  G. Mundy Metastasis: Metastasis to bone: causes, consequences and therapeutic opportunities , 2002, Nature Reviews Cancer.

[33]  Y. Iwakura,et al.  Suppression of autoimmune arthritis in interleukin-1-deficient mice in which T cell activation is impaired due to low levels of CD40 ligand and OX40 expression on T cells. , 2002, Arthritis and rheumatism.

[34]  C. Wood,et al.  Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway. , 2001, Cancer research.

[35]  T. Mcclanahan,et al.  Involvement of chemokine receptors in breast cancer metastasis , 2001, Nature.

[36]  H. Moch,et al.  Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. , 2000, Human pathology.

[37]  M. David,et al.  Distinct mechanisms of STAT phosphorylation via the interferon-alpha/beta receptor. Selective inhibition of STAT3 and STAT5 by piceatannol. , 2000, The Journal of biological chemistry.

[38]  S. Nakae,et al.  Development of Chronic Inflammatory Arthropathy Resembling Rheumatoid Arthritis in Interleukin 1 Receptor Antagonist–Deficient Mice , 2000, The Journal of experimental medicine.

[39]  G. Rodan,et al.  Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells. , 1999, Experimental cell research.

[40]  G. Gronowicz,et al.  Mice lacking the type I interleukin-1 receptor do not lose bone mass after ovariectomy. , 1998, Endocrinology.

[41]  G. Haas,et al.  Comparative intraosseal growth of human prostate cancer cell lines LNCaP and PC-3 in the nude mouse. , 1997, Anticancer research.

[42]  Roberto Pacifici,et al.  Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis , 1996, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[43]  R. Kitazawa,et al.  Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. , 1994, The Journal of clinical investigation.

[44]  R. Thompson,et al.  Interleukin-1 receptor antagonist decreases bone loss and bone resorption in ovariectomized rats. , 1994, The Journal of clinical investigation.

[45]  J. Symons,et al.  CORRELATION OF PLASMA INTERLEUKIN 1 LEVELS WITH DISEASE ACTIVITY IN RHEUMATOID ARTHRITIS , 1988, The Lancet.

[46]  F. Dewhirst,et al.  Purification and partial sequence of human osteoclast-activating factor: identity with interleukin 1 beta. , 1985, Journal of immunology.

[47]  J. Lechner,et al.  Establishment and characterization of a human prostatic carcinoma cell line (PC-3). , 1979, Investigative urology.

[48]  D. Paulson,et al.  Isolation of a human prostate carcinoma cell line (DU 145) , 1978, International journal of cancer.

[49]  M. Piazza,et al.  HEPATITIS B NOT TRANSMISSIBLE VIA FÆCAL-ORAL ROUTE , 1975, The Lancet.

[50]  M. Resnick,et al.  Molecular imaging of NF‐kappaB in prostate tissue after systemic administration of IL‐1β , 2008, The Prostate.

[51]  Reprints and Subscriptions Permissions , 2003 .

[52]  W. Arend Interleukin-1 receptor antagonist. , 1993, Advances in immunology.