Filamentary, patterned, and diffuse barrier discharges

Barrier discharges, also known as dielectric-barrier discharges or silent discharges, provide a simple technology to establish nonequilibrium plasma conditions in atmospheric-pressure gases. This property has led to a number of industrial applications, including ozone generation, surface modification, pollution control, CO/sub 2/ lasers, excimer lamps, and flat plasma-display panels. Depending on a variety of gas properties, operating parameters, and boundary conditions, the discharge can exhibit pronounced filamentary character, self-organized regular-discharge patterns, or completely diffuse appearance. The literature on these different types of barrier discharges is reviewed, and the underlying physical phenomena are discussed. Relative recent investigations on low-current density diffuse barrier discharges suggest novel applications of fairly "mild" plasmas for sterilization and disinfection purposes and utilizing their selective influence on biological cells.

[1]  V. Lebedev,et al.  Investigation of the dielectric barrier discharge properties in different gas mixtures , 2000 .

[2]  U. Küchler,et al.  Microdischarges in air-fed ozonizers , 1991 .

[3]  Gerhard J. Pietsch,et al.  Two-dimensional modelling of the dielectric barrier discharge in air , 1992 .

[4]  L. Loeb,et al.  The Mechanism of Spark Discharge in Air at Atmospheric Pressure. I , 1940 .

[5]  Cheng En Zheng,et al.  Effect of preionization on uniformity of photo-triggered XeCl laser discharges: modeling and comparison with experimental results , 1991 .

[6]  Erich E. Kunhardt,et al.  Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas , 2000 .

[7]  M. Kushner,et al.  Reaction chemistry and optimization of plasma remediation of NxOy from gas streams , 1995 .

[8]  T. Wydeven,et al.  Plasma polymerization of ethylene in an atmospheric pressure-pulsed discharge , 1979 .

[9]  Mark J. Kushner,et al.  Multiple microdischarge dynamics in dielectric barrier discharges , 1998 .

[10]  M. Kogoma,et al.  The mechanism of the stabilisation of glow plasma at atmospheric pressure , 1990 .

[11]  M. Kuzumoto,et al.  Silent discharges in ozonisers and CO 2 lasers , 1995 .

[12]  Flynn,et al.  Static and dynamic two-dimensional patterns in self-extinguishing discharge avalanches. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  J. Levatter,et al.  Necessary conditions for the homogeneous formation of pulsed avalanche discharges at high gas pressures , 1980 .

[14]  R Bartnikas,et al.  Note on discharges in helium under a.c. conditions , 1968 .

[15]  W. A. Gambling,et al.  The properties of high-pressure steady-state discharges in hydrogen , 1956 .

[16]  K. Wiesemann,et al.  Classical absorption and emission spectroscopy of barrier discharges in /NO and mixtures , 1997 .

[17]  H. Raether Zur Entwicklung von Kanalentladungen , 1940 .

[18]  K. V. Kozlov,et al.  Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure , 2001 .

[19]  J. Reece Roth,et al.  Industrial Plasma Engineering : Volume 1: Principles , 1995 .

[20]  Hans-Georg Purwins,et al.  Spatio-temporal pattern formation in a lateral high-frequency glow discharge system , 1993 .

[21]  C. Hibert,et al.  [OH(X)] measurements by resonant absorption spectroscopy in a pulsed dielectric barrier discharge , 1999 .

[22]  Zoran Falkenstein,et al.  Microdischarge behaviour in the silent discharge of nitrogen - oxygen and water - air mixtures , 1997 .

[23]  A. Doran The development of a Townsend discharge in N2 up to breakdown investigated by image converter, intensifier and photomultiplier techniques , 1968 .

[24]  Mounir Laroussi,et al.  Sterilization of contaminated matter with an atmospheric pressure plasma , 1996 .

[25]  William A. Tiller,et al.  Plasma bubble domains: A magnetic bubble analog , 1982 .

[26]  Masuhiro Kogoma,et al.  Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source , 1993 .

[27]  C. Vannier,et al.  Phototriggering of a 1-J excimer laser using either UV or x rays , 1987 .

[28]  J. A. Beaulieu,et al.  High peak power gas lasers , 1971 .

[29]  H. Raether Die Entwicklung der Elektronenlawine in den Funkenkanal , 1939 .

[30]  Masaaki Tanaka,et al.  CW 20-kW SAGE CO/sub 2/ laser for industrial use , 1993 .

[31]  H. Purwins,et al.  Plasma spots in a gas discharge system: birth, scattering and formation of molecules , 2001 .

[32]  B. Eliasson,et al.  Modeling and applications of silent discharge plasmas , 1991 .

[33]  S. Pellerin,et al.  Spectroscopic Characterization of CH4 + CO2 Plasmas Excited by a Dielectric Barrier Discharge at Atmospheric Pressure , 1997 .

[34]  C. Hibert,et al.  Rotational temperature measurements in atmospheric pulsed dielectric barrier discharge - gas temperature and molecular fraction effects , 2000 .

[35]  Mounir Laroussi,et al.  Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure , 1999 .

[36]  J. Townsend,et al.  Electricity in gases , 2022 .

[37]  A. Laflamme Double discharge excitation for atmospheric pressure CO2 lasers , 1970 .

[38]  J. Tulip,et al.  Photoinitiated and photosustained laser , 1972 .

[39]  A. Brablec,et al.  Experimental Study of Atmospheric Pressure Glow Discharge , 1998 .

[40]  R. Taylor,et al.  Preionization and discharge stability study of long optical pulse duration UV-preionized XeCl lasers , 1986 .

[41]  M. Steenbeck,et al.  Über die Glimmentladung bei hohen Drucken , 1933 .

[42]  Klein,et al.  Spontaneous pattern formation in an effectively one-dimensional dielectric-barrier discharge system , 2000, Physical review letters.

[43]  V. S. Gathen,et al.  Dielectric barrier discharges with steep voltage rise : laser absorption spectroscopy of NO concentrations and temperatures , 2000 .

[44]  A. Kulikovsky POSITIVE STREAMER IN A WEAK FIELD IN AIR : A MOVING AVALANCHE-TO-STREAMER TRANSITION , 1998 .

[45]  Z. Falkenstein Influence of ultraviolet illumination on microdischarge behavior in dry and humid N2, O2, air, and Ar/O2: The Joshi effect , 1997 .

[46]  Masuhiro Kogoma,et al.  Stable glow plasma at atmospheric pressure , 1988 .

[47]  K. Buss Die elektrodenlose Entladung nach Messung mit dem Kathodenoszillographen , 1932 .

[48]  R. Bartnikas,et al.  Spark-to-glow discharge transition due to increased surface conductivity on epoxy resin specimens , 1993 .

[49]  R. Bartnikas,et al.  Some Observations on the Character of Corona Discharges in Short Gap Spaces , 1971, IEEE Transactions on Electrical Insulation.

[50]  A. J. Beaulieu,et al.  TRANSVERSELY EXCITED ATMOSPHERIC PRESSURE CO2 LASERS , 1970 .

[51]  C. Punset,et al.  Self-organized filaments in dielectric barrier glow discharges , 1999 .

[52]  M. Kushner,et al.  Microstreamer dynamics during plasma remediation of NO using atmospheric pressure dielectric barrier discharges , 1996 .

[53]  W. Byszewski Diffuse discharges at high‐current density , 1989 .

[54]  Masuhiro Kogoma,et al.  Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure , 1994 .

[55]  V. Gibalov,et al.  The magnitude of the transferred charge in the silent discharge in oxygen , 1987 .

[56]  Baldur Eliasson,et al.  Dielectric-Barrier Discharges. Principle and Applications , 1997 .

[57]  L. C. Pitchford,et al.  Calculated characteristics of an ac plasma display panel cell , 1996 .

[58]  Michael Hirth,et al.  Ozone synthesis from oxygen in dielectric barrier discharges , 1987 .

[59]  J. Boeuf,et al.  Numerical model of an ac plasma display panel cell in neon‐xenon mixtures , 1995 .

[60]  Mounir Laroussi,et al.  Biological decontamination by nonthermal plasmas , 2000 .

[61]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[62]  N. Brenning,et al.  High-pressure pulsed avalanche discharges: formulas for required preionization density and rate for homogeneity , 1997 .

[63]  A. Jay Palmer,et al.  A physical model on the initiation of atmospheric‐pressure glow discharges , 1974 .

[64]  Mark J. Kushner,et al.  Ion composition of expanding microdischarges in dielectric barrier discharges , 1998 .

[65]  J. Roth,et al.  An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials , 2000 .

[66]  J. Roth,et al.  Air filter sterilization using a one atmosphere uniform glow discharge plasma (the volfilter) , 2000 .

[67]  C. Mayoux,et al.  Comparison Between Air Filamentary and Helium Glow Dielectric Barrier Discharges for the Polypropylene Surface Treatment , 1998 .

[68]  F. Tochikubo,et al.  Structure of Low-Frequency Helium Glow Discharge at Atmospheric Pressure between Parallel Plate Dielectric Electrodes , 1999 .

[69]  H. Purwins,et al.  SELF-ORGANIZED QUASIPARTICLES : BREATHING FILAMENTS IN A GAS DISCHARGE SYSTEM , 1999 .

[70]  M. Hirth Teilprozesse bei der Ozonerzeugung mittels stiller elektrischer Entladungen. I. Die elektrische Entladung im Ozonisator , 1981 .

[71]  C. Mayoux,et al.  Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier , 1998 .

[72]  A. Carr,et al.  Room temperature sterilization of surfaces and fabrics with a One Atmosphere Uniform Glow Discharge Plasma , 1998, Journal of Industrial Microbiology and Biotechnology.

[73]  Ulrich Kogelschatz,et al.  Silent-discharge driven excimer UV sources and their applications , 1992 .

[74]  Masaaki Tanaka,et al.  Silent-discharge excited TEM/sub 00/ 2.5 kW CO/sub 2/ laser , 1989 .

[75]  J. Roth,et al.  Experimental Generation Of A Steady-state Glow Discharge At Atmospheric Pressure , 1992, IEEE Conference Record - Abstracts. 1992 IEEE International Conference on Plasma.

[76]  G. Herziger,et al.  On the homogeneization of transverse gas discharges by preionization , 1981 .

[77]  B. Townsend Electricity as a business resource , 1991 .

[78]  Manuel Arrayás,et al.  Pattern Formation in Electric Discharges , 2000 .

[79]  J. Roth,et al.  Use of a one atmosphere uniform glow discharge plasma to kill a broad spectrum of microorganisms , 1999 .

[80]  Ulrich Kogelschatz,et al.  From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges , 1999 .

[81]  B. Eliasson,et al.  Modelling of dielectric barrier discharge chemistry , 1994 .

[82]  N. Gherardi,et al.  Transition from glow silent discharge to micro-discharges in nitrogen gas , 2000 .

[83]  Jing Li,et al.  Simulation of microdischarges in a dielectric-barrier discharge , 1997 .

[84]  J. Roth,et al.  Surface Modification of Fabrics Using a One-Atmosphere Glow Discharge Plasma to Improve Fabric Wettability , 1997 .

[85]  J. Meyer,et al.  Photographic and oscillographic investigations of spark discharges in hydrogen , 1967 .

[86]  S. Müller,et al.  Formation and decay mechanisms of excimer molecules in dielectric barrier discharges , 2000 .

[87]  U. Kogelschatz,et al.  Silent discharges for the generation of ultraviolet and vacuum ultraviolet excimer radiation , 1990 .

[88]  M. Pietralla,et al.  Two-dimensional simulation of filaments in barrier discharges , 1999 .

[89]  A. Sappey,et al.  Distribution of OH within silent discharge plasma reactors , 1996 .

[90]  Masaaki Tanaka,et al.  Observations of Silent Discharge in Air, Oxygen and Nitrogen by Super High Sensitivity Camera , 1982 .

[91]  G. Gouda,et al.  A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure , 1998 .

[92]  J. Levatter,et al.  High-power generation from a parallel-plates-driven pulsed nitrogen laser , 1974 .

[93]  J. Roth Industrial Plasma Engineering , 1995 .