On the minors of the implicitization Bézout matrix for a rational plane curve

[1]  O. J. Peterson The Double Points of Rational Curves , 1917 .

[2]  R. J. Walker Algebraic curves , 1950 .

[3]  F. Gantmacher,et al.  Applications of the theory of matrices , 1960 .

[4]  W. Fulton,et al.  Algebraic Curves: An Introduction to Algebraic Geometry , 1969 .

[5]  Ron Goldman,et al.  Vector elimination: A technique for the implicitization, inversion, and intersection of planar parametric rational polynomial curves , 1984, Comput. Aided Geom. Des..

[6]  Wayne Tiller,et al.  The Cayley method in computer aided geometric design , 1984, Comput. Aided Geom. Des..

[7]  Ron Goldman,et al.  Implicit representation of parametric curves and surfaces , 1984, Comput. Vis. Graph. Image Process..

[8]  J. Stillwell,et al.  Plane Algebraic Curves , 1986 .

[9]  Tony DeRose,et al.  A geometric characterization of parametric cubic curves , 1989, TOGS.

[10]  S. Abhyankar Algebraic geometry for scientists and engineers , 1990 .

[11]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[12]  J. Rafael Sendra,et al.  Symbolic Parametrization of Curves , 1991, J. Symb. Comput..

[13]  Bruce W. Char,et al.  Maple V Language Reference Manual , 1993, Springer US.

[14]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[15]  Falai Chen,et al.  Implicitization using moving curves and surfaces , 1995, SIGGRAPH.

[16]  Franz Winkler,et al.  Polynomial Algorithms in Computer Algebra , 1996, Texts and Monographs in Symbolic Computation.

[17]  Ron Goldman,et al.  Implicitizing Rational Curves by the Method of Moving Algebraic Curves , 1997, J. Symb. Comput..

[18]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[19]  Falai Chen,et al.  The moving line ideal basis of planar rational curves , 1998, Comput. Aided Geom. Des..

[20]  Ron Goldman,et al.  Fast Computation of the Bezout and Dixon Resultant Matrices , 2002, J. Symb. Comput..