Application of Compact-Reconstruction Weighted Essentially Nonoscillatory Schemes to Compressible Aerodynamic Flows

Compact-reconstruction weighted essentially nonoscillatory schemes have lower dissipation and dispersion errors as well as higher spectral resolution than weighted essentially nonoscillatory schemes of the same order of convergence. Numerical experiments on benchmark inviscid flow problems have demonstrated improvements in the resolution and preservation of flow features such as vortices, discontinuities, and small-length-scale waves. This paper describes the integration of these schemes with a compressible, unsteady, Reynolds-averaged Navier–Stokes solver and demonstrates their performance for two- and three-dimensional flow problems. The schemes are validated and verified for domains discretized by curvilinear and overset grids. Several flow examples demonstrate improvements in the resolution of boundary-layer and wake-flow features for solutions obtained by the compact-reconstruction weighted essentially nonoscillatory schemes. The results presented indicate that these schemes are well suited to aerody...

[1]  D. Sasaki,et al.  Efficient implementation of WENO Scheme on structured meshes , 2011 .

[2]  Debojyoti Ghosh,et al.  Compact-reconstruction weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 2013 .

[3]  Axel Rohde,et al.  EIGENVALUES AND EIGENVECTORS OF THE EULER EQUATIONS IN GENERAL GEOMETRIES , 2001 .

[4]  John A. Ekaterinaris,et al.  Regular Article: Implicit, High-Resolution, Compact Schemes for Gas Dynamics and Aeroacoustics , 1999 .

[5]  Chaoqun Liu,et al.  Weighted compact and non-compact scheme for shock tube and shock entropy interaction , 2007 .

[6]  James D. Baeder,et al.  Implicit Hole Cutting - A New Approach to Overset Grid Connectivity , 2003 .

[7]  Yiqing Shen,et al.  Generalized finite compact difference scheme for shock/complex flowfield interaction , 2011, J. Comput. Phys..

[8]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[9]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[10]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[11]  James D. Baeder,et al.  Compact Reconstruction Schemes with Weighted ENO Limiting for Hyperbolic Conservation Laws , 2012, SIAM J. Sci. Comput..

[12]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[13]  Jung J. Choi High-Order Methods for Conservation Laws Employing Embedded Structured Element Method on Unstructured Hexahedral Grid , 2015 .

[14]  S. Balachandar,et al.  A massively parallel multi-block hybrid compact-WENO scheme for compressible flows , 2009, J. Comput. Phys..

[15]  Bernardo Cockburn,et al.  Nonlinearly stable compact schemes for shock calculations , 1994 .

[16]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[17]  J. Dacles-Mariani,et al.  Numerical/experimental study of a wingtip vortex in the near field , 1995 .

[18]  J. M. Powers,et al.  Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .

[19]  A. Jameson,et al.  Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations , 1988 .

[20]  Antony Jameson,et al.  A new high resolution scheme for compressible viscous flows with shocks , 1995 .

[21]  Miguel R. Visbal,et al.  Smart Weighted Compact Scheme for Shock Tube and Shock-Entropy Interaction , 2006 .

[22]  Chi-Wang Shu,et al.  Development of nonlinear weighted compact schemes with increasingly higher order accuracy , 2008, J. Comput. Phys..

[23]  H. C. Yee,et al.  Explicit and Implicit Multidimensional Compact High-Resolution Shock-Capturing Methods , 1997 .

[24]  Sergio Pirozzoli,et al.  Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction , 2002 .

[25]  E Weinan,et al.  Essentially Compact Schemes for Unsteady Viscous Incompressible Flows , 1996 .

[26]  Antony Jameson,et al.  Lower-upper implicit schemes with multiple grids for the Euler equations , 1987 .

[27]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[28]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[29]  Wai-Sun Don,et al.  An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..

[30]  Ayodeji O. Demuren,et al.  Higher-Order Compact Schemes for Numerical Simulation of Incompressible Flows , 1998 .

[31]  R. F. Warming,et al.  On the construction and application of implicit factored schemes for conservation laws , 1978 .

[32]  R. D. Harrington,et al.  Full-scale-tunnel Investigation of the Static-thrust Performance of a Coaxial Helicopter Rotor , 1951 .

[33]  V. Schmitt,et al.  Pressure distributions on the ONERA M6 wing at transonic Mach numbers , 1979 .

[34]  Culbert B. Laney Computational Gasdynamics: Solution Averaging: Reconstruction–Evolution Methods , 1998 .

[35]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[36]  Yuxin Ren,et al.  A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws , 2003 .

[37]  T. Pulliam,et al.  A diagonal form of an implicit approximate-factorization algorithm , 1981 .

[38]  T. Pulliam Time accuracy and the use of implicit methods. [in CFD , 1993 .

[39]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[40]  Nail K. Yamaleev,et al.  A systematic methodology for constructing high-order energy stable WENO schemes , 2009, J. Comput. Phys..

[41]  Li Jiang,et al.  Weighted Compact Scheme for Shock Capturing , 2001 .

[42]  Xiaogang Deng,et al.  Developing high-order weighted compact nonlinear schemes , 2000 .

[43]  Emil M. Constantinescu,et al.  Scalable Nonlinear Compact Schemes , 2014 .

[44]  Nikolaus A. Adams,et al.  A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems , 1996 .

[45]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[46]  Barry Koren,et al.  A robust upwind discretization method for advection, diffusion and source terms , 1993 .

[47]  Gecheng Zha,et al.  Improvement of Stability and Accuracy for Weighted Essentially Nonoscillatory Scheme , 2009 .

[48]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[49]  Christophe Eric Corre,et al.  A residual-based compact scheme for the compressible Navier-Stokes equations , 2001 .

[50]  Emil M. Constantinescu,et al.  Well-Balanced Formulation of Gravitational Source Terms for Conservative Finite-Difference Atmospheric Flow Solvers , 2015 .

[51]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[52]  Scott E. Sherer,et al.  High-order compact finite-difference methods on general overset grids , 2005 .

[53]  James D. Baeder,et al.  Weighted Non-linear Compact Schemes for the Direct Numerical Simulation of Compressible, Turbulent Flows , 2014, Journal of Scientific Computing.

[54]  George Huang,et al.  An Essentially Nonoscillatory High-Order Padé-Type (ENO-Padé) Scheme , 2002 .

[55]  G. F. Carey,et al.  High-Order Compact Finite Difference Methods , 2011 .

[56]  Weixing Yuan,et al.  Numerical and Experimental Simulations of Flapping Wings , 2010 .