Symmetry aware embedding for shape correspondence

Abstract In this paper, we present symmetry-aware embedding for shape correspondence, which is robust against symmetric (left–right) flips and rotational (front–back) flips. Unlike previous embedding approaches that embed surfaces into a high-dimensional space, our technique is based on a low dimensional (3D) embedding. Our method can solve left–right flips by finding a 3D rigid transformation between two embedding surfaces without reflections. Using the global reflectional symmetry plane to align two surfaces, we can further reduce the problem to that of finding the rotation that corrects the signs of the front–back and up–down directions (there are four possible solutions). We exploit this simple problem formulation and alleviate the front–back flips, by explicitly comparing the front and back of embedding surfaces based on the global and local extrinsic shape characteristics. Consequently, reasonably accurate point-to-point correspondences can be established simply by performing the nearest neighbor search in our embedding space. Experimental results based on a shape correspondence benchmark showed that our method produces stable matching results.

[1]  Hao Li,et al.  Global Correspondence Optimization for Non‐Rigid Registration of Depth Scans , 2008, Comput. Graph. Forum.

[2]  Alexander M. Bronstein,et al.  Full and Partial Symmetries of Non-rigid Shapes , 2010, International Journal of Computer Vision.

[3]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[4]  Daniel Cohen-Or,et al.  Electors Voting for Fast Automatic Shape Correspondence , 2010, Comput. Graph. Forum.

[5]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[6]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[7]  Kun Zhou,et al.  Subspace gradient domain mesh deformation , 2006, ACM Trans. Graph..

[8]  Hao Zhang,et al.  Robust 3D Shape Correspondence in the Spectral Domain , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[9]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[10]  Tobias Gurdan Sparse Modeling of Intrinsic Correspondences , 2014 .

[11]  Kazuhito Yokoi,et al.  Symmetry-Aware Nonrigid Matching of Incomplete 3D Surfaces , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  Yücel Yemez,et al.  Coarse‐to‐Fine Isometric Shape Correspondence by Tracking Symmetric Flips , 2013, Comput. Graph. Forum.

[13]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[14]  Niloy J. Mitra,et al.  Symmetry in 3D Geometry: Extraction and Applications , 2013, Comput. Graph. Forum.

[15]  Leonidas J. Guibas,et al.  Shape Matching via Quotient Spaces , 2013 .

[16]  Keenan Crane,et al.  Geodesics in heat: A new approach to computing distance based on heat flow , 2012, TOGS.

[17]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[18]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Zhiyuan Zhang,et al.  Symmetry Robust Descriptor for Non-Rigid Surface Matching , 2013, Comput. Graph. Forum.

[20]  I. Daubechies,et al.  Symmetry factored embedding and distance , 2010, ACM Trans. Graph..

[21]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[22]  Leonidas J. Guibas,et al.  Non-Rigid Registration Under Isometric Deformations , 2008 .

[23]  T. Funkhouser,et al.  A planar-reflective symmetry transform for 3D shapes , 2006, SIGGRAPH '06.

[24]  Zoran Popovic,et al.  The space of human body shapes: reconstruction and parameterization from range scans , 2003, ACM Trans. Graph..

[25]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[26]  J. Leeuw Applications of Convex Analysis to Multidimensional Scaling , 2000 .

[27]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[28]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[29]  Radu Horaud,et al.  Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Daniel Cohen-Or,et al.  Deformation‐Driven Shape Correspondence , 2008, Comput. Graph. Forum.

[31]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[32]  Vladimir G. Kim,et al.  Finding Surface Correspondences Using Symmetry Axis Curves , 2012, Comput. Graph. Forum.

[33]  Ron Kimmel,et al.  On Bending Invariant Signatures for Surfaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  James F. O'Brien,et al.  Fast simulation of mass-spring systems , 2013, ACM Trans. Graph..

[35]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[36]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[37]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[38]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[39]  Prosenjit Bose,et al.  Posture Invariant Correspondence of Incomplete Triangular Manifolds , 2007, Int. J. Shape Model..

[40]  Niloy J. Mitra,et al.  Symmetry in 3D Geometry: Extraction and Applications , 2013, Comput. Graph. Forum.

[41]  Ligang Liu,et al.  Partial intrinsic reflectional symmetry of 3D shapes , 2009, ACM Trans. Graph..

[42]  Sebastian Thrun,et al.  The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces , 2004, NIPS.

[43]  Vladimir G. Kim,et al.  Möbius Transformations For Global Intrinsic Symmetry Analysis , 2010, Comput. Graph. Forum.

[44]  Hao Zhang,et al.  Spectral global intrinsic symmetry invariant functions , 2014, Graphics Interface.

[45]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .