The statistical analysis of spatial pattern

In a contribution (Bartlett, 1971 a) to the Symposium on Statistical Ecology at Yale in 1969, I noted in my introductory remarks that that paper was not intended to be in any way a review of statistical techniques for analysing spatial patterns. My contribution to a conference at Sheffield in 1973 aimed, at least in part, to supply such a review and forms the basis of this monograph; but in these prefatory remarks I must still make clear what I decided to discuss, and what I have omitted. Broadly speaking, the coverage is that included in seminars and lectures I have given on this theme since 1969. We may divide problems of spatial pattern (in contrast with complete random chaos) into (i) detecting departures from randomness, Oi) analysing such departures when detected, for example, in relation to some stochastic model and (iii) special problems which require separate consideration; for example, sophisticated problems of pattern recognition in specific fields, such as the computer reading of handwriting or recognition of chromosomes.

[1]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[2]  J. G. Skellam STUDIES IN STATISTICAL ECOLOGY SPATIAL PATTERN , 1952 .

[3]  G. H. Freeman SPREAD OF DISEASES IN A RECTANGULAR PLANTATION WITH VACANCIES , 1953 .

[4]  J. Doob Stochastic processes , 1953 .

[5]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[6]  Joseph Anthony Navarro,et al.  STUDIES IN STATISTICAL ECOLOGY , 1955 .

[7]  H. R. Thompson SPATIAL POINT PROCESSES, WITH APPLICATIONS TO ECOLOGY , 1955 .

[8]  V. Heine MODELS FOR TWO-DIMENSIONAL STATIONARY STOCHASTIC PROCESSES , 1955 .

[9]  P. Greig-Smith,et al.  Quantitative Plant Ecology. , 1958 .

[10]  D. Crisp TERRITORIAL BEHAVIOUR IN BARNACLE SETTLEMENT , 1961 .

[11]  P. Whittle,et al.  Topographic correlation, power-law covariance functions, and diffusion , 1962 .

[12]  E. C. Pielou The Spatial Pattern of Two-Phase Patchworks of Vegetation , 1964 .

[13]  M. S. Bartlett,et al.  The spectral analysis of two-dimensional point processes , 1964 .

[14]  M. S. Bartlett,et al.  207. Note: A Note on Spatial Pattern , 1964 .

[15]  D. Brook On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systems , 1964 .

[16]  P. Moran A note on recent research in geometrical probability , 1966, Journal of Applied Probability.

[17]  David R. Cox,et al.  The statistical analysis of series of events , 1966 .

[18]  R Mead,et al.  A mathematical model for the estimation of inter-plant competition. , 1967, Biometrics.

[19]  M. S. Bartlett,et al.  Inference and stochastic processes , 1967 .

[20]  Eberhardt Ll,et al.  Some developments in 'distance sampling'. , 1967 .

[21]  P. L. Dobruschin The Description of a Random Field by Means of Conditional Probabilities and Conditions of Its Regularity , 1968 .

[22]  M. S. Bartlett,et al.  A Further Note on Nearest Neighbour Models , 1968 .

[23]  Paul Switzer MAPPING A GEOGRAPHICALLY CORRELATED ENVIRONMENT. , 1969 .

[24]  M. Bartlett Physical nearest-neighbour models and non-linear time-series , 1971 .

[25]  F. Spitzer Markov Random Fields and Gibbs Ensembles , 1971 .

[26]  J. Besag On the correlation structure of some two-dimensional stationary processes , 1972 .

[27]  J. Besag Nearest‐Neighbour Systems and the Auto‐Logistic Model for Binary Data , 1972 .

[28]  M. S. Bartlett,et al.  Physical nearest-neighbour models and non-linear time-series. II Further discussion of approximate solutions and exact equations , 1971, Journal of Applied Probability.

[29]  J. M. Hammersley,et al.  Stochastic Models for the Distribution of Particles in Space , 1972 .

[30]  Nearest-neighbour systems: a lemma with application to Bartlett's global solutions , 1972 .

[31]  P. Moran,et al.  A Gaussian Markovian process on a square lattice , 1973, Journal of Applied Probability.

[32]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[33]  E. C. Pielou,et al.  An introduction to mathematical ecology , 1970 .

[34]  K. Ord Estimation Methods for Models of Spatial Interaction , 1975 .