MLDStore - DNNs as Similitude Models for Sharing Big Data (Brief Announcement)

[1]  Ehud Gudes,et al.  Secure distributed computation of anonymized views of shared databases , 2012, TODS.

[2]  Yoshua Bengio,et al.  Deep Generative Stochastic Networks Trainable by Backprop , 2013, ICML.

[3]  R. Serfling Probability Inequalities for the Sum in Sampling without Replacement , 1974 .

[4]  Derek Hoiem,et al.  Learning without Forgetting , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  J. R. Radbill,et al.  Similitude and Approximation Theory , 1986 .

[6]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[7]  Razvan Pascanu,et al.  Overcoming catastrophic forgetting in neural networks , 2016, Proceedings of the National Academy of Sciences.

[8]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, FOCS 1982.

[9]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[10]  Han Liu,et al.  Continual Learning in Generative Adversarial Nets , 2017, ArXiv.

[11]  Michael McCloskey,et al.  Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem , 1989 .

[12]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[13]  Ehud Gudes,et al.  Privacy via Maintaining Small Similitude Data for Big Data Statistical Representation , 2018, CSCML.

[14]  Pascal Vincent,et al.  Generalized Denoising Auto-Encoders as Generative Models , 2013, NIPS.

[15]  Payman Mohassel,et al.  SecureML: A System for Scalable Privacy-Preserving Machine Learning , 2017, 2017 IEEE Symposium on Security and Privacy (SP).

[16]  Ehud Gudes,et al.  Efficient and private approximations of distributed databases calculations , 2016, 2017 IEEE International Conference on Big Data (Big Data).

[17]  Antonia Creswell,et al.  Denoising Adversarial Autoencoders , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[18]  Navdeep Jaitly,et al.  Adversarial Autoencoders , 2015, ArXiv.