Quantum information processing by NMR using a 5-qubit system formed by dipolar coupled spins in an oriented molecule.

[1]  Jeetendra Kumar,et al.  Anil Kumar , 2006 .

[2]  Anil Kumar,et al.  Search for optimum labeling schemes in qubit systems for quantum-information processing by nuclear magnetic resonance , 2004, quant-ph/0403002.

[3]  Jae-Seung Lee,et al.  Preparation of pseudopure states in a cluster of dipolar-coupled spins using multiple-quantum dynamics , 2004, quant-ph/0402132.

[4]  Anil Kumar,et al.  Use of quadrupolar nuclei for quantum-information processing by nuclear magnetic resonance: Implementation of a quantum algorithm , 2003, quant-ph/0306100.

[5]  V. Ermakov,et al.  Nuclear magnetic resonance implementation of the Deutsch–Jozsa algorithm using different initial states , 2003, quant-ph/0304058.

[6]  T. S. Mahesh,et al.  Efficient quantum-state tomography for quantum-information processing using a two-dimensional Fourier-transform technique , 2002, quant-ph/0212116.

[7]  T. S. Mahesh,et al.  Quantum information processing by nmr using strongly coupled spins , 2002, quant-ph/0212123.

[8]  T. S. Mahesh,et al.  Implementation of conditional phase-shift gate for quantum information processing by NMR, using transition-selective pulses. , 2002, Journal of magnetic resonance.

[9]  K. V. Ramanathan,et al.  Quantum-information processing by nuclear magnetic resonance: Experimental implementation of half-adder and subtractor operations using an oriented spin-7/2 system , 2002 .

[10]  T. S. Mahesh,et al.  Ensemble quantum-information processing by NMR: Implementation of gates and the creation of pseudopure states using dipolar coupled spins as qubits , 2002 .

[11]  Timothy F. Havel,et al.  Entanglement transfer experiment in NMR quantum information processing , 2002 .

[12]  K. Gao,et al.  Experimental implementation of Hogg's algorithm on a three-quantum-bit NMR quantum computer , 2001, quant-ph/0108068.

[13]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[14]  Christopher C. Gerry,et al.  Generation of maximally entangled photonic states with a quantum-optical Fredkin gate , 2001 .

[15]  B. Fung Pairs of pseudopure states for 4- and 5-qubit nuclear magnetic resonance systems , 2001 .

[16]  T. S. Mahesh,et al.  Ensemble quantum-information processing by NMR: Spatially averaged logical labeling technique for creating pseudopure states , 2001 .

[17]  B. Fung Use of pairs of pseudopure states for NMR quantum computing , 2001 .

[18]  T. S. Mahesh,et al.  Implementing logic gates and the Deutsch-Jozsa quantum algorithm by two-dimensional NMR using spin- and transition-selective pulses. , 2001, Journal of magnetic resonance.

[19]  Isaac L. Chuang,et al.  Demonstration of quantum logic gates in liquid crystal nuclear magnetic resonance , 2000 .

[20]  Arvind,et al.  Implementing quantum-logic operations, pseudopure states, and the Deutsch-Jozsa algorithm using noncommuting selective pulses in NMR , 1999, quant-ph/9906027.

[21]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[22]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[23]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[24]  Dolores C. Miller,et al.  NUCLEAR MAGNETIC RESONANCE QUANTUM COMPUTING USING LIQUID CRYSTAL SOLVENTS , 1999, quant-ph/9907063.

[25]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[26]  N. Linden,et al.  An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer , 1998, quant-ph/9808039.

[27]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[28]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[29]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.

[30]  Jonathan A. Jones,et al.  Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer , 1998, quant-ph/9801027.

[31]  Timothy F. Havel,et al.  Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing , 1997, quant-ph/9709001.

[32]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[33]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[34]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[35]  DiVincenzo,et al.  Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[36]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[37]  Anil Kumar,et al.  Flip-angle dependence of nonequilibrium states yielding information on connectivity of transitions and energy levels of oriented molecules. A modified Z-COSY experiment , 1992 .

[38]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[39]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  K. Wüthrich,et al.  A systematic approach to the suppression of J cross peaks in 2D exchange and 2D NOE spectroscopy , 1985 .

[41]  M. Guéron,et al.  Solvent-peak-suppressed NMR: Correction of baseline distortions and use of strong-pulse excitation , 1983 .

[42]  R. Feynman Simulating physics with computers , 1999 .

[43]  Peter Diehl,et al.  NMR: Basic Principles and Progress , 1969 .

[44]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .