Functional equations and the Galton-Watson process

In the present exposition we are concerned only with the simple Galton-Watson process, initiated by a single ancestor (Harris (1963), Chapter I). Let denote the probability generating function of the offspring distribution of a single individual. Our fundamental assumption, which holds throughout the sequel, is that fj ≠ 1, j = 0,1,2, …; in particular circumstances it shall be necessary to strengthen this to 0 < f 0 ≡ F(0) < 1, which is the relevant assumption when extinction behaviour is to be considered. (Even so, our assumptions will always differ slightly from those of Harris (1963), p. 5.)

[1]  E. Seneta,et al.  A LIMIT THEOREM FOR THE GALTON-WATSON PROCESS WITH IMMIGRATION , 1969 .

[2]  E. Seneta On Koenigs' ratios for iterates of real functions , 1969, Journal of the Australian Mathematical Society.

[3]  E. Seneta On Recent Theorems Concerning the Supercritical Galton-Watson Process , 1968 .

[4]  Eugene Seneta,et al.  On asymptotic properties of sub-critical branching processes , 1968, Journal of the Australian Mathematical Society.

[5]  R. Slack A branching process with mean one and possibly infinite variance , 1968 .

[6]  A LEMMA ON THE GALTON-WATSON PROCESS AND SOME OF ITS CONSEQUENCES , 1968 .

[7]  E. Seneta Topics in the theory and applications of Markov chains , 1968 .

[8]  E. Seneta The Stationary Distribution of a Branching Process Allowing Immigration: A Remark on the Critical Case , 1968 .

[9]  M. Kuczma Functional equations in a single variable , 1968 .

[10]  E. Seneta The Galton-Watson process with mean one , 1967, Journal of Applied Probability.

[11]  M. Kuczma,et al.  Note on Iteration of Concave Functions , 1967 .

[12]  A. Joffe On the Galton-Watson Branching Process with Mean Less than One , 1967 .

[13]  Eugene Seneta,et al.  A Refinement of Two Theorems in the Theory of Branching Processes , 1967 .

[14]  R B Potts,et al.  ANALYSIS OF A COMPUTER CONTROL OF AN ISOLATED INTERSECTION. IN VEHICULAR TRAFFIC SCIENCE , 1967 .

[15]  E. Seneta,et al.  On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states , 1966, Journal of Applied Probability.

[16]  H. Kesten,et al.  A Limit Theorem for Multidimensional Galton-Watson Processes , 1966 .

[17]  D. Vere-Jones SIMPLE STOCHASTIC MODELS FOR THE RELEASE OF QUANTA OF TRANSMITTER FROM A NERVE TERMINAL , 1966 .

[18]  B. P. Stigum,et al.  A Theorem on the Galton-Watson Process , 1966 .

[19]  S. Karlin,et al.  Spectral theory of branching processes. I , 1966 .

[20]  D. Kendall Branching Processes Since 1873 , 1966 .

[21]  C. Heathcote Corrections and Comments on the Paper “A Branching Process Allowing Immigration” , 1966 .

[22]  Frank Spitzer,et al.  The Galton-Watson Process with Mean One and Finite Variance , 1966 .

[23]  R. Coifman Sur l'unicité des solutions de l'équation d'abel-schröder et l'itération continue , 1965, Journal of the Australian Mathematical Society.

[24]  C. R. Heathcote,et al.  A Branching Process Allowing Immigration , 1965 .

[25]  M. Kuczma Note on Schröder's functional equation , 1964, Journal of the Australian Mathematical Society.

[26]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[27]  M. Kuczma On the Schröder equation , 1963 .

[28]  John Frank Charles Kingman,et al.  The single server queue in heavy traffic , 1961, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  Limiting theorems for Galton-Watson branching process , 1959 .

[30]  George Szekeres,et al.  Regular iteration of real and complex functions , 1958 .

[31]  M. Bartlett,et al.  An Introduction to Stochastic Processes. , 1956 .

[32]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[33]  Hellmuth Kneser,et al.  Reelle analytische Lösungen der Gleichung ... und verwandter Funktionalgleichungen. , 1950 .

[34]  R. Fisher,et al.  The probability distribution of gene-differences in relation to selection, mutation, and random extinction , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  J. Haldane Some Statistical Problems Arising in Genetics , 1949 .

[36]  É. Picard Lecons sur quelques Equations Fonctionnelles , 1934, The Mathematical Gazette.

[37]  A. Khintchine Asymptotische Gesetze der Wahrscheinlichkeitsrechnung , 1933 .

[38]  P. Lévy Fonctions à croissance régulière et itération d'ordre fractionnaire , 1928 .