State-space system identification of robot manipulator dynamics

We have applied and evaluated system identification methods using both commercial software and dedicated subspace model identification software (MOESP). Results using the different software tools have been similar (but not identical) in accuracy and predictive power, the main differences being the time required for computation and occasional failures of one algorithm in delivery of a stable model. For linear model identification all methods tested failed to provide residuals, i.e. model misfit, uncorrelated with input and without significant autocorrelation. As a result, no linear stochastic innovations model could be formulated in any satisfactory manner. However, model-order tests based on singular values suggest that a low model order be sufficient for input–output modeling to within a modeling accuracy of 2–5%. Thus, the identification of a state-space model combined with a friction model provides effective means to modeling in robotics.

[1]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[2]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[3]  M. Moonen,et al.  On- and off-line identification of linear state-space models , 1989 .

[4]  Rolf Johansson,et al.  System modeling and identification , 1993 .

[5]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  M. Verhaegen Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm , 1992 .

[8]  J. Juang Applied system identification , 1994 .

[9]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1992 .

[10]  Clarence W. de Silva,et al.  Parameter estimation and actuator friction analysis for a mini excavator , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[11]  Romeo Ortega,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[12]  Christopher G. Atkeson,et al.  Model-Based Control of a Robot Manipulator , 1988 .

[13]  Rolf Johansson,et al.  An algorithm for continuous-time state space identification , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[14]  Patrick Dewilde,et al.  Subspace model identification Part 1. The output-error state-space model identification class of algorithms , 1992 .

[15]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[16]  Rolf Johansson Quadratic optimization of motion coordination and control , 1989 .

[17]  U. Desai,et al.  A realization approach to stochastic model reduction and balanced stochastic realizations , 1982, 1982 21st IEEE Conference on Decision and Control.

[18]  H. Akaike Markovian Representation of Stochastic Processes by Canonical Variables , 1975 .

[19]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[20]  Krzysztof Kozłowski,et al.  Modelling and Identification in Robotics , 1998 .

[21]  Jorge Angeles,et al.  Nonlinear modeling and parameter identification of harmonic drive robotic transmissions , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[22]  G. Goodwin,et al.  Adaptive computed torque control for rigid link manipulators , 1986, 1986 25th IEEE Conference on Decision and Control.

[23]  A.M. Sabatini,et al.  Digital-signal-processing techniques for the design of coded excitation sonar ranging systems , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[24]  Michel Verhaegen A Subspace Model Identification Solution to the Identification of Mixed Causal, Anti-Causal LTI Systems , 1996, SIAM J. Matrix Anal. Appl..

[25]  Gustaf Olsson,et al.  Ultrasonic detection in robotic environments , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[26]  Henry W. Stone,et al.  Kinematic Modeling, Identification, and Control of Robotic Manipulators , 1987 .