Hierarchical modeling of space-time dendroclimatic fields: Comparing a frequentist and a Bayesian approach

ABSTRACT Environmental processes, including climatic impacts in cold regions, are typically acting at multiple spatial and temporal scales. Hierarchical models are a flexible statistical tool that allows for decomposing spatiotemporal processes in simpler components connected by conditional probabilistic relationships. This article reviews two hierarchical models that have been applied to tree-ring proxy records of climate to model their space–time structure: STEM (Spatio-Temporal Expectation Maximization) and BARCAST (Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time). Both models account for spatial and temporal autocorrelation by including latent spatiotemporal processes, and they both take into consideration measurement and model errors, while they differ in their inferential approach. STEM adopts the frequentist perspective, and its parameters are estimated through the expectation-maximization (EM) algorithm, with uncertainty assessed through bootstrap resampling. BARCAST is developed in the Bayesian framework, and relies on Markov chain Monte Carlo (MCMC) algorithms for sampling values from posterior probability distributions of interest. STEM also explicitly includes covariates in the process model definition. As hierarchical modeling keeps contributing to the analysis of complex ecological and environmental processes, proxy reconstructions are likely to improve, thereby providing better constraints on future climate change scenarios and their impacts over cold regions.

[1]  Alessandro Fasso,et al.  Maximum likelihood estimation of the dynamic coregionalization model with heterotopic data , 2011 .

[2]  Murali Haran,et al.  Piecing together the past: statistical insights into paleoclimatic reconstructions , 2010 .

[3]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[4]  A. F. Militino,et al.  Interpolation of daily rainfall using spatiotemporal models and clustering , 2015 .

[5]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[6]  Catherine A Calder,et al.  Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. , 2009, Ecological applications : a publication of the Ecological Society of America.

[7]  James S. Clark,et al.  Hierarchical Modelling for the Environmental Sciences: Statistical Methods and Applications , 2006 .

[8]  Michela Cameletti,et al.  Comparing spatio‐temporal models for particulate matter in Piemonte , 2011 .

[9]  Johannes P. Werner,et al.  Assessing the performance of the BARCAST climate field reconstruction technique for a climate with long-range memory , 2018, Climate of the Past.

[10]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[11]  J. Møller,et al.  Handbook of Spatial Statistics , 2008 .

[12]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[13]  Nicole A. Lazar,et al.  Statistical Analysis With Missing Data , 2003, Technometrics.

[14]  Peter Huybers,et al.  Recent temperature extremes at high northern latitudes unprecedented in the past 600 years , 2013, Nature.

[15]  Andrew Gelman,et al.  Multilevel (Hierarchical) Modeling: What It Can and Cannot Do , 2006, Technometrics.

[16]  Michela Cameletti,et al.  A Unified Statistical Approach for Simulation, Modeling, Analysis and Mapping of Environmental Data , 2010, Simul..

[17]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[18]  P. Guttorp,et al.  Uncertainty analysis in climate change assessments , 2013 .

[19]  Richard J. Barker,et al.  A Model-Based Approach to Climate Reconstruction Using Tree-Ring Data , 2015, 1510.02557.

[20]  P. Craigmile,et al.  Statistical modeling of extreme value behavior in North American tree-ring density series , 2013, Climatic Change.

[21]  Alan E Gelfand,et al.  Hierarchical Modeling for Spatial Data Problems. , 2012, Spatial statistics.

[22]  Christopher K. Wikle,et al.  Modern perspectives on statistics for spatio‐temporal data , 2015 .

[23]  Christopher K. Wikle,et al.  Hierarchical Modeling with Spatial Data , 2010 .

[24]  Christian Körner,et al.  The 90 ways to describe plant temperature , 2017 .

[25]  Peter D. Hoff,et al.  A First Course in Bayesian Statistical Methods , 2009 .

[26]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[27]  M. Cameletti,et al.  Spatial and Spatio-temporal Bayesian Models with R - INLA , 2015 .

[28]  Gerald R. North,et al.  Surface Temperature Reconstructions for the Last 1000 Years , 2006 .

[29]  James V. Zidek,et al.  A case study in preferential sampling: Long term monitoring of air pollution in the UK , 2014 .

[30]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[31]  Кпсс,et al.  Первая конференция военных и боевых организаций РСДРП. Ноябрь 1906 год , 1932 .

[32]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[33]  L. M. Berliner,et al.  A Bayesian tutorial for data assimilation , 2007 .

[34]  Jack P. C. Kleijnen,et al.  On hierarchical modeling. , 1981 .

[35]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[36]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[37]  A. Taylor,et al.  Advancing Dendrochronological Studies of Fire in the United States , 2018 .

[38]  B. McShane,et al.  A statistical analysis of multiple temperature proxies: Are reconstructions of surface temperatures over the last 1000 years reliable? , 2011, 1104.4002.

[39]  Bo Li,et al.  Specification and estimation of the transfer function in dendroclimatological reconstructions , 2014, Environmental and Ecological Statistics.

[40]  Martin P. Tingley,et al.  A Bayesian ANOVA Scheme for Calculating Climate Anomalies, with Applications to the Instrumental Temperature Record , 2012 .

[41]  J. Smerdon,et al.  A Pseudoproxy Evaluation of Bayesian Hierarchical Modeling and Canonical Correlation Analysis for Climate Field Reconstructions over Europe , 2013 .

[42]  Michela Cameletti,et al.  The EM algorithm in a distributed computing environment for modelling environmental space-time data , 2009, Environ. Model. Softw..

[43]  Franco Biondi,et al.  BOX - JENKINS MODELS OF FOREST INTERIOR TREE -RING CHRONOLOGIES , 1987 .

[44]  T. Schneider Analysis of Incomplete Climate Data: Estimation of Mean Values and Covariance Matrices and Imputation of Missing Values. , 2001 .

[45]  Peter John Huybers,et al.  A Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time. Part I: Development and Applications to Paleoclimate Reconstruction Problems , 2010 .

[46]  N. Cressie,et al.  A dimension-reduced approach to space-time Kalman filtering , 1999 .

[47]  Joseph Hilbe,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2009 .

[48]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[49]  Gianluca Baio,et al.  Spatial and spatio-temporal models with R-INLA. , 2013, Spatial and spatio-temporal epidemiology.

[50]  Thomas M. Melvin,et al.  A “signal-free” approach to dendroclimatic standardisation , 2008 .

[51]  Courtney A. Schultz,et al.  Assessing Interactions Among Changing Climate, Management, and Disturbance in Forests: A Macrosystems Approach , 2015 .

[52]  M. Hooten,et al.  Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models , 2016 .

[53]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[54]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[55]  C. Körner,et al.  A world‐wide study of high altitude treeline temperatures , 2004 .

[56]  Melvin J. Hinich,et al.  Time Series Analysis by State Space Methods , 2001 .

[57]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[58]  G. Casella,et al.  Explaining the Gibbs Sampler , 1992 .

[59]  C. Wikle Hierarchical Models in Environmental Science , 2003 .

[60]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[61]  R. Katz Techniques for estimating uncertainty in climate change scenarios and impact studies , 2002 .

[62]  Christian Körner,et al.  A climate-based model to predict potential treeline position around the globe , 2014, Alpine Botany.

[63]  Andrew B. Lawson,et al.  Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology , 2008 .

[64]  Edward R. Cook,et al.  The 'segment length curse' in long tree-ring chronology development for palaeoclimatic studies , 1995 .

[65]  Matthew R. Schofield,et al.  Model fitting and evaluation in climate reconstruction of tree-ring data : A comment on Steinschneider et al. (2017): Hierarchical regression models for dendroclimatic standardization and climate reconstruction , 2017 .

[66]  T. Swetnam,et al.  Dendroclimatology : progress and prospects , 2011 .

[67]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[68]  H. Rue,et al.  Spatio-temporal modeling of particulate matter concentration through the SPDE approach , 2012, AStA Advances in Statistical Analysis.

[69]  P. Soranno,et al.  Macrosystems ecology: understanding ecological patterns and processes at continental scales , 2014 .

[70]  D. Meko,et al.  Elevation-layered dendroclimatic signal in eastern Mediterranean tree rings , 2016 .

[71]  F. Biondi Dendroclimatic Reconstruction at Kilometer-Scale Grid Points: A Case Study from the Great Basin of North America , 2014 .

[72]  Jane L. Harvill Spatio‐temporal processes , 2010 .

[73]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[74]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[75]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[76]  Erniel B. Barrios,et al.  Bootstrap Methods , 2011, International Encyclopedia of Statistical Science.

[77]  Peter John Huybers,et al.  A Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time. Part II: Comparison with the Regularized Expectation–Maximization Algorithm , 2010 .

[78]  Upmanu Lall,et al.  Hierarchical regression models for dendroclimatic standardization and climate reconstruction , 2017 .

[79]  F. Biondi,et al.  A Theory-Driven Approach to Tree-Ring Standardization: Defining the Biological Trend from Expected Basal Area Increment , 2008 .

[80]  Sarah Eichmann,et al.  Tree Rings And Climate , 2016 .

[81]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[82]  Franco Biondi,et al.  Geostatistically modeling stem size and increment in an old-growth forest , 1994 .

[83]  竹安 数博,et al.  Time series analysis and its applications , 2007 .

[84]  Bala Rajaratnam,et al.  Statistical paleoclimate reconstructions via Markov random fields , 2013, 1309.6702.

[85]  Benjamin W. Wah,et al.  Significance and Challenges of Big Data Research , 2015, Big Data Res..

[86]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[87]  Thomas Brox,et al.  Maximum Likelihood Estimation , 2019, Time Series Analysis.