The effect of hydrogen-bonding on the ultrafast electronic deactivation dynamics of indigo carmine

Excited-state dynamics and mechanisms of the rapid deactivation process of indigo carmine (InC) were investigated by means of femtosecond transient absorption spectroscopy and steady-state Raman spectroscopy. Solvent dependence of the excited-state lifetime revealed that intermolecular hydrogen-bonding with the solvent molecule is more effective than the intramolecular ones to accelerate the deactivation process. Steady-state Raman spectra in the low-frequency region indicated a loss of molecular planarity in protic solvents. It was concluded that the hydrogen-bonding in the excited state, which leads to the twisting around the central CC bond and/or to the out-of-plane deformation, was of crucial importance in the rapid deactivation.

[1]  J. S. D. Melo,et al.  Photophysical and Spectroscopic Studies of Indigo Derivatives in Their Keto and Leuco Forms , 2004 .

[2]  H. Miyasaka,et al.  Picosecond and femtosecond laser photolysis studies of a photochromic diarylethene derivative: multiphoton gated reaction , 2003 .

[3]  H. Miyasaka,et al.  Development of kinetic analysis system in pump–probe measurement based on femtosecond chromium: forsterite laser and its application to S1–S0 relaxation dynamics of azulene , 2003 .

[4]  H. Miyasaka,et al.  Ultrafast Excited State Deactivation of Triphenylmethane Dyes , 2002 .

[5]  P. Chou,et al.  Excited-State Intramolecular Proton Transfer in 10-Hydroxybenzo[h]quinoline , 2001 .

[6]  E. Riedle,et al.  Ultrafast excited-state proton transfer and subsequent coherent skeletal motion of 2-(2′-hydroxyphenyl)benzothiazole , 2000 .

[7]  M. Terazima Vibrational relaxation from electronically photoexcited states in solution studied by the acoustic peak delay method: hydrogen bonding effect to betaine-30 , 1999 .

[8]  M. Maroncelli,et al.  Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited , 1995 .

[9]  B. Schrader,et al.  Near‐infrared fourier transform Raman spectroscopy of indigoids , 1995 .

[10]  C. Reichardt,et al.  Solvatochromic Dyes as Solvent Polarity Indicators , 1994 .

[11]  H. Miyasaka,et al.  Picosecond dynamics of photoinduced electron transfer processes in poly(N-vinylcarbazole) solid film doped with electron acceptors as revealed by transient absorption spectroscopy and dichroism measurements , 1994 .

[12]  Graham R. Fleming,et al.  Femtosecond solvation dynamics of water , 1994, Nature.

[13]  H. Miyasaka,et al.  Femtosecond-picosecond laser photolysis studied on the mechanisms of electron transfer induced by hydrogen-bonding interactions in nonpolar solutions : 1-aminopyrene-pyridine systems , 1993 .

[14]  H. Miyasaka,et al.  Femtosecond-picosecond laser photolysis studies on the mechanisms of fluorescence quenching induced by hydrogen-bonding interactions - 1-pyrenol-pyridine systems , 1993 .

[15]  S. Grimme,et al.  AM1 and X-ray studies of the structures and isomerization reactions of indigo dyes , 1993 .

[16]  J. Abe,et al.  Molecular orbital and resonance Raman studies of the structures of N,N’‐disubstituted indigo dyes , 1989 .

[17]  Hiroaki Takahashi,et al.  Resonance Raman study of the structures of trans and cis isomers and the CC stretching frequencies of N,N′-derivatives of indigo , 1989 .

[18]  T. Elsaesser,et al.  Femtosecond spectroscopy of excited-state proton transfer in 2-(2′-hydroxyphenyl)benzothiazole , 1988 .

[19]  T. Elsaesser,et al.  Picosecond spectroscopy of intramolecular hydrogen bonds in 4,4',7,7'-tetramethylindigo , 1986 .

[20]  M. Irie,et al.  Picosecond spectroscopy of trans-thioindigo and the mechanism of trans .fwdarw. cis photoisomerization , 1984 .

[21]  Michael H. Abraham,et al.  Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, .pi.*, .alpha., and .beta., and some methods for simplifying the generalized solvatochromic equation , 1983 .

[22]  M. Alfimov,et al.  CIS ⇌ trans photoisomerization of thioindigoid dyes studied by picosecond flash photolysis , 1981 .

[23]  M. Alfimov,et al.  Picosecond spectroscopy of trans-thioindigo , 1980 .

[24]  S. Imada,et al.  The Stereoisomerization of N,N′-Diacyl Derivatives of Indigo , 1979 .

[25]  D. Schulte‐Frohlinde,et al.  Laser flash studies of thioindigo and indigo dyes. Evidence for a trans configuration of the triplet state , 1979 .

[26]  K. Grellmann,et al.  Mechanism of the photochemical cis⇌trans isomerization of thioindigo and 6,6'-diethoxy-thioindigo in solution , 1978 .

[27]  G. Wyman,et al.  Excited state chemistry of indigoid dyes: 5. The intermediacy of the triplet state in the direct photoisomerization and the effect of substituents , 1977 .

[28]  H. Herrmann,et al.  Excited State Chemistry of Indigoid Dyes , 1976 .

[29]  G. Wyman,et al.  Evidence for the intermediacy of the triplet state in the direct photoisomerization of thioindigo dyes , 1975 .

[30]  J. Otterstedt Photostability and molecular structure , 1973 .

[31]  D. L. Ross,et al.  Photochromic indigoids. II. Absorption spectra and quantum yields for the photoisomerization of selenoindigo , 1970 .

[32]  C. Giuliano,et al.  cis-trans Isomerization and Pulsed Laser Studies of Substituted Indigo Dyes , 1968 .

[33]  W. Lüttke,et al.  Theoretische und spektroskopische Untersuchungen an Indigofarbstoffen, III. Der Einfluß zwischenmolekularer Wasserstoffbrücken auf die Spektren von Indigo im festen Zustand , 1966 .

[34]  W. Lüttke,et al.  Theoretische und spektroskopische Untersuchungen an Indigofarbstoffen, I. Infrarot‐ und Lichtabsorptionsspektren einfacher Indigofarbstoffe , 1964 .

[35]  G. Wyman,et al.  Spectroscopic Studies on Dyes. IV. The Fluorescence Spectra of Thioindigo Dyes1 , 1957 .

[36]  J. Weinstein,et al.  Spectroscopic Studies on Dyes. I. The Association of Indigo Dyes in the Solid Phase1 , 1956 .

[37]  W. Brode,et al.  The Relation between the Absorption Spectra and the Chemical Constitution of Dyes XXII. cis-trans Isomerism in Thioindigo Dyes1 , 1951 .

[38]  J. Forrest Refractive Index Values for Potassium Bromide , 1942 .

[39]  A. Baeyer,et al.  Darstellung von Indigblau aus Orthonitrobenzaldehyd , 1882 .