Min-plus methods in eigenvalue perturbation theory and generalised Lidskii-Vishik-Ljusternik theorem

We extend the perturbation theory of Vishik, Ljusternik and Lidskii for eigenvalues of matrices, using methods of min-plus algebra. We show that the asymptotics of the eigenvalues of a perturbed matrix is governed by certain discrete optimisation problems, from which we derive new perturbation formulae, extending the classical ones and solving cases which where singular in previous approaches. Our results include general weak majorisation inequalities, relating leading exponents of eigenvalues of perturbed matrices and min-plus analogues of eigenvalues.

[1]  T. Raghavan,et al.  Nonnegative Matrices and Applications , 1997 .

[2]  G. Litvinov,et al.  Idempotent Functional Analysis: An Algebraic Approach , 2000, math/0009128.

[3]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[4]  R. Cuninghame-Green Minimax Algebra and Applications , 1994 .

[5]  Raymond Cuninghame-Green,et al.  The characteristic maxpolynomial of a matrix , 1983 .

[6]  Tosio Kato Perturbation theory for linear operators , 1966 .

[7]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[8]  Grigory Mikhalkin Counting curves via lattice paths in polygons , 2002 .

[9]  S. Gaubert,et al.  Spectral theorem for convex monotone homogeneous maps, and ergodic control , 2001, math/0110108.

[10]  H. Baumgärtel Analytic perturbation theory for matrices and operators , 1985 .

[11]  Quantization of the Bellman equation, exponential asymptotics and tunneling , 1992 .

[12]  Alan Edelman,et al.  Nongeneric Eigenvalue Perturbations of Jordan Blocks , 1998 .

[13]  V. Lidskii Perturbation theory of non-conjugate operators , 1966 .

[14]  Geert Jan Olsder,et al.  Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[15]  Geert Jan Olsder,et al.  Cramer and Cayley-Hamilton in the max algebra , 1988 .

[16]  Jean Cochet-Terrasson A constructive xed point theorem for min-max functions , 1999 .

[17]  Ravindra B. Bapat,et al.  A max version of the Perron-Frobenius theorem , 1998 .

[18]  Stéphane Gaubert,et al.  Methods and Applications of (MAX, +) Linear Algebra , 1997, STACS.

[19]  J. Pin Tropical Semirings Jean-Eric Pin , 2005 .

[20]  Oleg Viro,et al.  Dequantization of Real Algebraic Geometry on Logarithmic Paper , 2000, math/0005163.

[21]  S. Gaubert,et al.  Asymptotics of the Perron eigenvalue and eigenvector using Max-algebra , 1998 .

[22]  Raymond Cuninghame-Green,et al.  An algebra for piecewise-linear minimax problems , 1980, Discret. Appl. Math..

[23]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[24]  Mikael Passare,et al.  Laurent determinants and arrangements of hyperplane amoebas , 2000 .

[25]  R. Nikoukhah,et al.  Convex analysis and spectral analysis of timed event graphs , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[26]  Bart De Schutter,et al.  The QR decomposition and the singular value decomposition in the symmetrized max-plus algebra , 1997, 1997 European Control Conference (ECC).

[27]  Rainer E. Burkard,et al.  Finding all essential terms of a characteristic maxpolynomial , 2003, Discret. Appl. Math..

[28]  Marianne Akian,et al.  Discrete max-plus spectral theory , 2005 .

[29]  G. Lallement Semigroups and combinatorial applications , 1979 .

[30]  Anatolii A. Puhalskii,et al.  Large Deviations and Idempotent Probability , 2001 .

[31]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[32]  Jean-Pierre Quadrat,et al.  Max-Plus Algebra and Applications to System Theory and Optimal Control , 1995 .

[33]  S. Gaubert,et al.  Generic Asymptotics of Eigenvalues Using Min-Plus Algebra , 2001 .

[34]  M. J. D. L. Puente,et al.  Real plane algebraic curves , 2002 .

[35]  BRANKO NAJMAN The Asymptotic Behavior of the Eigenvalues of a Singularly Perturbed Linear Pencil , 1998, SIAM J. Matrix Anal. Appl..

[36]  Mikael Passare,et al.  Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope. , 2004 .

[37]  Marianne Akian,et al.  Perturbation of eigenvalues of matrix pencils and the optimal assignment problem , 2004 .

[38]  David E. Speyer,et al.  The tropical Grassmannian , 2003, math/0304218.

[39]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997 .

[40]  M. Overton,et al.  On the Lidskii-Vishik-Lyusternik Perturbation Theory for Eigenvalues of Matrices with Arbitrary Jordan Structure , 1997, SIAM J. Matrix Anal. Appl..

[41]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[42]  Erik Elmroth,et al.  A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997, SIAM J. Matrix Anal. Appl..

[43]  Grigory Mikhalkin Amoebas of algebraic varieties , 2001 .