Hot working behavior of a nitrogen-alloyed Fe–18Mn–18Cr–N austenitic stainless steel

[1]  S. Abbasi,et al.  Hot working behavior of Fe–29Ni–17Co analyzed by mechanical testing and processing map , 2012 .

[2]  Kamran Dehghani,et al.  Hot working behavior of 2205 austenite–ferrite duplex stainless steel characterized by constitutive equations and processing maps , 2011 .

[3]  Zhou-hua Jiang,et al.  Microstructural evolution and mechanical properties of aging high nitrogen austenitic stainless steels , 2010 .

[4]  Yi-liu Fang,et al.  Hot deformation behavior of a new austenite―ferrite duplex stainless steel containing high content of nitrogen , 2009 .

[5]  Heon-Young Ha,et al.  Effects of combined addition of carbon and nitrogen on pitting corrosion behavior of Fe–18Cr–10Mn alloys , 2009 .

[6]  M. Saucedo-Muñoz,et al.  Evaluation of toughness deterioration by an electrochemical method in an isothermally-aged N-containing austenitic stainless steel , 2009 .

[7]  S. Takaki,et al.  Time-temperature-precipitation characteristics of high-nitrogen austenitic Fe−18Cr−18Mn−2Mo−0.9N steel , 2006 .

[8]  J. Simmons,et al.  Overview: high-nitrogen alloying of stainless steels , 1996 .

[9]  S. Venugopal,et al.  Processing map for cold and hot working of stainless steel type AISI 304 L , 1992 .

[10]  M. O. Speidel,et al.  Influence of annealing temperature on the microstructure and mechanical properties of a high nitrogen containing austenitic stainless steel , 1987 .

[11]  R. Wright,et al.  The role of C and N in the brittle fracture of Fe-26 Cr , 1979 .

[12]  G. Masing,et al.  The Institute of Metals , 1925, Naturwissenschaften.

[13]  D. Kim Influence of nitrogen-induced grain refinement on mechanical properties of nitrogen alloyed type 316LN stainless steel , 2012 .

[14]  Hideaki Takahashi,et al.  Effect of microstructure evolution on fracture toughness in isothermally aged austenitic stainless steels for cryogenic applications , 2000 .