Active Asteroid-SLAM

In this paper, we propose an active real-time capable 3D graph based simultaneous localization and mapping (Graph SLAM) approach, which actively estimates the state of an autonomous spacecraft relative to a simultaneously established map estimate. The graph is constructed in a tightly-coupled fashion, where an Extended Kalman Filter estimates the relative offset between two of its vertices. An additional relative measurement is derived by matching point clouds obtained by a light detection and ranging (LiDAR) system. In order to yield a significant speed-up, scan matching is implemented on the GPU. To reduce the uncertainty of either the state or the map estimate, we present an approach to actively control the system resting on an extended representation of uncertainty in the map. Furthermore, it adapts its behavior depending on the current uncertainty distribution in order to find a dynamic trade-off between exploitation (improve localization performance) and exploration (improve knowledge about the environment). Finally, we present a post-processing approach to discover landing sites in the map estimate without prior knowledge. The evaluation is conducted in a numerical simulation, where the spacecraft explores the real 3D model of Itokawa in its actual dynamic environment. Within that simulation, we use a shader-based GPU implementation for simulating LiDAR measurements. We evaluate the performance of the active SLAM approach and demonstrate that the use of the adaptive approach improves navigation and exploration performance at the same time.

[1]  R. W. Dissly,et al.  Flash Lidars for Planetary Missions , 2012 .

[2]  Arndt Bode,et al.  Designing Spacecraft High Performance Computing Architectures , 2013 .

[3]  Joachim Clemens,et al.  Multi-Sensor Fusion and Active Perception for Autonomous Deep Space Navigation , 2018, 2018 21st International Conference on Information Fusion (FUSION).

[4]  Wolfram Burgard,et al.  Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters , 2007, IEEE Transactions on Robotics.

[5]  Wolfram Burgard,et al.  OctoMap: an efficient probabilistic 3D mapping framework based on octrees , 2013, Autonomous Robots.

[6]  Anne Sarah Schattel Dynamic Modeling and Implementation of Trajectory Optimization, Sensitivity Analysis, and Optimal Control for Autonomous Deep Space Navigation , 2018 .

[7]  C. Wagner,et al.  Spherical harmonic representation of the gravity field from dynamic satellite data , 1982 .

[8]  Marcelo Ang,et al.  Singularities of Euler and Roll-Pitch-Yaw Representations , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[10]  Wolfram Burgard,et al.  G2o: A general framework for graph optimization , 2011, 2011 IEEE International Conference on Robotics and Automation.

[11]  Basilio Bona,et al.  Active SLAM and Exploration with Particle Filters Using Kullback-Leibler Divergence , 2014, J. Intell. Robotic Syst..

[12]  Sebastian Thrun,et al.  Perspectives on standardization in mobile robot programming: the Carnegie Mellon Navigation (CARMEN) Toolkit , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[13]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[14]  Joachim Clemens Multi-robot in-ice localization using graph optimization , 2017, 2017 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC).

[15]  Franz Andert,et al.  Lidar-Aided Camera Feature Tracking and Visual SLAM for Spacecraft Low-Orbit Navigation and Planetary Landing , 2015 .

[16]  Jay W. McMahon,et al.  Orbit Determination Using Flash Lidar Around Small Bodies , 2017 .

[17]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[18]  Edwin Olson,et al.  Real-time correlative scan matching , 2009, 2009 IEEE International Conference on Robotics and Automation.

[19]  Oskar von Stryk,et al.  Hector Open Source Modules for Autonomous Mapping and Navigation with Rescue Robots , 2013, RoboCup.

[20]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[21]  Akira Fujiwara,et al.  Hayabusa and its adventure around the tiny asteroid Itokawa , 2006, Proceedings of the International Astronomical Union.

[22]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[23]  Wolfram Burgard,et al.  A Tutorial on Graph-Based SLAM , 2010, IEEE Intelligent Transportation Systems Magazine.

[24]  Chang-Hun Kim,et al.  RViz: a toolkit for real domain data visualization , 2015, Telecommunication Systems.

[25]  Shinpei Kato,et al.  An Open Approach to Autonomous Vehicles , 2015, IEEE Micro.

[26]  Max Risler,et al.  Behavior control for single and multiple autonomous agents based on hierarchical finite state machines , 2010 .

[27]  Rob Landis,et al.  Advances in planetary defense in the United States , 2019 .

[28]  Colin R. McInnes,et al.  Usage of asteroid resources for space-based geoengineering , 2013 .

[29]  Daniel J. Scheeres,et al.  The Actual Dynamical Environment About Itokawa , 2006 .

[30]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[31]  B. Eissfeller,et al.  Autonomous Orbit Navigation for a Mission to the Asteroid Main Belt , 2015 .

[32]  Petr Pravec,et al.  The asteroid lightcurve database , 2009 .

[33]  Martin Magnusson,et al.  The three-dimensional normal-distributions transform : an efficient representation for registration, surface analysis, and loop detection , 2009 .

[34]  Joachim Clemens,et al.  Extended Kalman filter with manifold state representation for navigating a maneuverable melting probe , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[35]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[36]  Nicholas Roy,et al.  Global A-Optimal Robot Exploration in SLAM , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[37]  Wolfram Burgard,et al.  Information Gain-based Exploration Using Rao-Blackwellized Particle Filters , 2005, Robotics: Science and Systems.

[38]  Ian D. Reid,et al.  On the comparison of uncertainty criteria for active SLAM , 2012, 2012 IEEE International Conference on Robotics and Automation.

[39]  Joachim Clemens,et al.  Optimal rotation sequences for active perception , 2016, Commercial + Scientific Sensing and Imaging.

[40]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[41]  Jay W. McMahon,et al.  Robust Orbit Determination with Flash Lidar Around Small Bodies , 2018, Journal of Guidance, Control, and Dynamics.

[42]  B. Eissfeller,et al.  Mission concept selection for an asteroid mining mission , 2016 .

[43]  T. Kubota,et al.  SURF-Based SLAM Scheme using Octree Occupancy Grid for Autonomous Landing on Asteroids , 2010 .

[44]  Farzin Amzajerdian,et al.  Utilization of 3D imaging flash lidar technology for autonomous safe landing on planetary bodies , 2010, OPTO.

[45]  Edwin Olson,et al.  Robust and efficient robotic mapping , 2008 .

[46]  Edwin Olson,et al.  Fast iterative alignment of pose graphs with poor initial estimates , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[47]  Nando de Freitas,et al.  A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot , 2009, Auton. Robots.

[49]  Peter Biber,et al.  The normal distributions transform: a new approach to laser scan matching , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[50]  Jose Luis Blanco Claraco Development of Scientific Applications with the Mobile Robot Programming Toolkit , 2010 .

[51]  Tom Duckett,et al.  A multilevel relaxation algorithm for simultaneous localization and mapping , 2005, IEEE Transactions on Robotics.

[52]  John J. Leonard,et al.  Adaptive Mobile Robot Navigation and Mapping , 1999, Int. J. Robotics Res..

[53]  J. Kiefer General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .

[54]  Roger Förstner,et al.  Spacecraft design of a multiple asteroid orbiter with re-docking lander , 2017 .

[55]  Sebastian Thrun,et al.  FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges , 2003, IJCAI.

[56]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[57]  James R. Wertz,et al.  Space mission engineering : the new SMAD , 2011 .

[58]  Panagiotis Tsiotras,et al.  An Information-Theoretic Active Localization Approach during Relative Circumnavigation in Orbit , 2016 .

[59]  R. Lumia,et al.  Hierarchical Control of Intelligent Machines Applied to Space Station Telerobots , 1987 .

[60]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[61]  Brent W. Barbee,et al.  OSIRIS-REx Touch-And-Go (TAG) Mission Design and Analysis , 2013 .

[62]  Udo Frese,et al.  Integrating generic sensor fusion algorithms with sound state representations through encapsulation of manifolds , 2011, Inf. Fusion.

[63]  Joachim Clemens,et al.  Dimensions of Uncertainty in Evidential Grid Maps , 2014, Spatial Cognition.

[64]  Y. Tsuda,et al.  System design of the Hayabusa 2—Asteroid sample return mission to 1999 JU3 , 2013 .

[65]  Stergios I. Roumeliotis,et al.  Vision-Aided Inertial Navigation for Spacecraft Entry, Descent, and Landing , 2009, IEEE Transactions on Robotics.

[66]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[67]  Scott P. Cryan,et al.  A Survey of LIDAR Technology and Its Use in Spacecraft Relative Navigation , 2013 .

[68]  Randi J. Rost OpenGL shading language , 2004 .

[69]  Sebastian Thrun,et al.  Coastal Navigation with Mobile Robots , 1999, NIPS.

[70]  G. Klir Uncertainty and Information: Foundations of Generalized Information Theory , 2005 .

[71]  Gabriel Zachmann,et al.  KaNaRiA: Identifying the Challenges for Cognitive Autonomous Navigation and Guidance for Missions to Small Planetary Bodies , 2015 .

[72]  Joachim Clemens,et al.  Evidential FastSLAM for grid mapping , 2013, Proceedings of the 16th International Conference on Information Fusion.

[73]  C. Büskens,et al.  Optimization and Sensitivity Analysis of Trajectories for Autonomous Small Celestial Body Operations , 2016 .

[74]  Michael Lange,et al.  MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission , 2017 .

[75]  Thomas Reineking,et al.  Belief Functions: Theory and Algorithms , 2014 .

[76]  Jiang Li,et al.  A Vision-Based Automatic Safe Landing-Site Detection System , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[77]  Shinpei Kato,et al.  Autoware on Board: Enabling Autonomous Vehicles with Embedded Systems , 2018, 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS).

[78]  Joachim Clemens,et al.  An evidential approach to SLAM, path planning, and active exploration , 2016, Int. J. Approx. Reason..

[79]  Wolfram Burgard,et al.  A Tree Parameterization for Efficiently Computing Maximum Likelihood Maps using Gradient Descent , 2007, Robotics: Science and Systems.

[80]  John A. Christian,et al.  Glidar: An OpenGL-based, Real-Time, and Open Source 3D Sensor Simulator for Testing Computer Vision Algorithms , 2016, J. Imaging.

[81]  Wolfgang Straßer,et al.  A Probabilistic Framework for Robust and Accurate Matching of Point Clouds , 2004, DAGM-Symposium.

[82]  Michèle Lavagna,et al.  Autonomous navigation & mapping of small bodies , 2018, 2018 IEEE Aerospace Conference.

[83]  Philippe Smets,et al.  The Transferable Belief Model , 1994, Artif. Intell..

[84]  Christof Büskens,et al.  The ESA NLP Solver WORHP , 2012 .

[86]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.