Eurographics/ Ieee-vgtc Symposium on Visualization 2008 Interaction-dependent Semantics for Illustrative Volume Rendering

In traditional illustration the choice of appropriate styles and rendering techniques is guided by the intention of the artist. For illustrative volume visualizations it is difficult to specify the mapping between the 3D data and the visual representation that preserves the intention of the user. The semantic layers concept establishes this mapping with a linguistic formulation of rules that directly map data features to rendering styles. With semantic layers fuzzy logic is used to evaluate the user defined illustration rules in a preprocessing step.

[1]  Carl-Fredrik Westin,et al.  Tissue Classification Based on 3D Local Intensity Structures for Volume Rendering , 2000, IEEE Trans. Vis. Comput. Graph..

[2]  Stefan Bruckner,et al.  Style Transfer Functions for Illustrative Volume Rendering , 2007, Comput. Graph. Forum.

[3]  Lefteri H. Tsoukalas,et al.  Fuzzy and neural approaches in engineering , 1997 .

[4]  Jf Baldwin,et al.  An Introduction to Fuzzy Logic Applications in Intelligent Systems , 1992 .

[5]  Kwan-Liu Ma,et al.  An intelligent system approach to higher-dimensional classification of volume data , 2005, IEEE Transactions on Visualization and Computer Graphics.

[6]  Kwan-Liu Ma,et al.  Lighting transfer functions using gradient aligned sampling , 2004, IEEE Visualization 2004.

[7]  Joe Michael Kniss,et al.  Statistically quantitative volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[8]  Steven K. Feiner,et al.  Automated generation of intent-based 3D Illustrations , 1991, SIGGRAPH.

[9]  Eduard Gröller,et al.  Two-Level Volume Rendering , 2001, IEEE Trans. Vis. Comput. Graph..

[10]  Christof Rezk-Salama,et al.  High-Level User Interfaces for Transfer Function Design with Semantics , 2006, IEEE Transactions on Visualization and Computer Graphics.

[11]  Stefan Bruckner,et al.  Semantic Layers for Illustrative Volume Rendering , 2007, IEEE Transactions on Visualization and Computer Graphics.

[12]  Peter-Pike J. Sloan,et al.  The Lit Sphere: A Model for Capturing NPR Shading from Art , 2001, Graphics Interface.

[13]  Frédo Durand,et al.  Programmable Style for NPR Line Drawing , 2004, Rendering Techniques.

[14]  James P. Ahrens,et al.  Scout: a hardware-accelerated system for quantitatively driven visualization and analysis , 2004, IEEE Visualization 2004.

[15]  Ivan Viola,et al.  Importance-driven volume rendering , 2004, IEEE Visualization 2004.

[16]  Richard Sproat,et al.  WordsEye: an automatic text-to-scene conversion system , 2001, SIGGRAPH.

[17]  Jens Schneider,et al.  ClearView: An Interactive Context Preserving Hotspot Visualization Technique , 2006, IEEE Transactions on Visualization and Computer Graphics.

[18]  Han-Wei Shen,et al.  Multi-variate, Time Varying, and Comparative Visualization with Contextual Cues , 2006, IEEE Transactions on Visualization and Computer Graphics.

[19]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[20]  David S. Ebert,et al.  Illustration motifs for effective medical volume illustration , 2005, IEEE Computer Graphics and Applications.

[21]  Stefan Bruckner,et al.  TECHNICAL REPORT VolumeShop: An Interactive System for Direct Volume , 2022 .

[22]  John Shalf,et al.  Query-driven visualization of large data sets , 2005, VIS 05. IEEE Visualization, 2005..