Modulation of the Plasma Membrane Ca2+ Pump

[1]  Emanuel E. Strehler,et al.  Plasma Membrane Ca2+ ATPase Isoform 4b Binds to Membrane-associated Guanylate Kinase (MAGUK) Proteins via Their PDZ (PSD-95/Dlg/ZO-1) Domains* , 1998, The Journal of Biological Chemistry.

[2]  J. Putney SIGNAL TRANSDUCTION: Calcium Signaling: Up, Down, Up, Down.... What's the Point? , 1998 .

[3]  P. De Koninck,et al.  Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. , 1998, Science.

[4]  K. Pászty,et al.  Protein Kinase C Phosphorylates the “a” Forms of Plasma Membrane Ca2+ Pump Isoforms 2 and 3 and Prevents Binding of Calmodulin* , 1997, The Journal of Biological Chemistry.

[5]  D. Storm,et al.  The Prooncoprotein EWS Binds Calmodulin and Is Phosphorylated by Protein Kinase C through an IQ Domain* , 1997, The Journal of Biological Chemistry.

[6]  Htet Htet Aung,et al.  Plasma Membrane Ca2+ Pump in Rat Brain , 1997, The Journal of Biological Chemistry.

[7]  A. G. Filoteo,et al.  Plasma Membrane Ca2+ Pump Isoforms 2a and 2b Are Unusually Responsive to Calmodulin and Ca2+ * , 1997, The Journal of Biological Chemistry.

[8]  T. Stauffer,et al.  Immunolocalization of the plasma membrane Ca2+ pump isoforms in the rat brain , 1997, Brain Research.

[9]  A. G. Filoteo,et al.  Protein Kinase C Activates the Plasma Membrane Ca2+ Pump Isoform 4b by Phosphorylation of an Inhibitory Region Downstream of the Calmodulin-binding Domain* , 1996, The Journal of Biological Chemistry.

[10]  R. Pourcho,et al.  Plasma membrane calcium ATPase in synaptic terminals of chick Edinger-Westphal neurons , 1996, Brain Research.

[11]  A. G. Filoteo,et al.  Detection of isoform 4 of the plasma membrane calcium pump in human tissues by using isoform-specific monoclonal antibodies. , 1996, The Biochemical journal.

[12]  E. Carafoli,et al.  Colocalization of the dihydropyridine receptor, the plasma-membrane calcium ATPase isoform 1 and the sodium/calcium exchanger to the junctional-membrane domain of transverse tubules of rabbit skeletal muscle. , 1996, European journal of biochemistry.

[13]  E. Carafoli,et al.  Mutation of conserved residues in transmembrane domains 4,6 and 8 causes loss of Ca2+ transport by the plasma membrane Ca2+ pump. , 1996, Biochemistry.

[14]  A. G. Filoteo,et al.  Plasma Membrane Calcium Pump Isoform 4a Has a Longer Calmodulin-Binding Domain Than 4b (*) , 1996, The Journal of Biological Chemistry.

[15]  B. Roufogalis,et al.  The plasma membrane calcium pump--a physiological perspective on its regulation. , 1995, Cell calcium.

[16]  J. Gardner,et al.  Protein kinase C modulates cytosolic free calcium by stimulating calcium pump activity in Jurkat T cells. , 1995, Cell calcium.

[17]  A. G. Filoteo,et al.  Two Residues That May Ligate Ca2+ in Transmembrane Domain Six of the Plasma Membrane Ca2+-ATPase (*) , 1995, The Journal of Biological Chemistry.

[18]  A. Houdusse,et al.  Target sequence recognition by the calmodulin superfamily: implications from light chain binding to the regulatory domain of scallop myosin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. T. Penniston,et al.  Unique localization of mRNA encoding plasma membrane Ca2+ pump isoform 3 in rat thin descending loop of Henle. , 1995, The American journal of physiology.

[20]  T. Stauffer,et al.  Tissue distribution of the four gene products of the plasma membrane Ca2+ pump. A study using specific antibodies. , 1995, The Journal of biological chemistry.

[21]  B. Jacobson,et al.  Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2+)-ATPase, and inositol trisphosphate receptor. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Shigekawa,et al.  Ca2+‐ATPase distributes differently in cardiac sarcolemma than dihydropyridine receptor α1 subunit and Na+/Ca2+ exchanger , 1994 .

[23]  E. Carafoli,et al.  Cloning and expression of isoform 2 of the human plasma membrane Ca2+ ATPase. Functional properties of the enzyme and its splicing products. , 1994, The Journal of biological chemistry.

[24]  E. Carafoli Biogenesis: Plasma membrane calcium ATPase: 15 years of work on the purified enzyme 1 , 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  J. Walters,et al.  Plasma-membrane calcium-pump isoforms in human and rat liver. , 1994, The Biochemical journal.

[26]  William L. Stahl,et al.  The plasma membrane Ca2+-ATPase mRNA isoform PMCA 4 is expressed at high levels in neurons of rat piriform cortex and neocortex , 1994, Neuroscience Letters.

[27]  J. T. Penniston,et al.  Plasma Membrane Ca2+ Pump: Recent Developments , 1994 .

[28]  J. Andersen,et al.  Amino acids Asn796 and Thr799 of the Ca(2+)-ATPase of sarcoplasmic reticulum bind Ca2+ at different sites. , 1994, The Journal of biological chemistry.

[29]  L. Neyses,et al.  Differentiation‐specific isoform mRNA expression of the calmodulin‐dependent plasma membrane Ca(2+)‐ATPase , 1994, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  A. G. Filoteo,et al.  Regulatory region of plasma membrane Ca2+ pump. 28 residues suffice to bind calmodulin but more are needed for full auto-inhibition of the activity. , 1994, The Journal of biological chemistry.

[31]  R. Heim,et al.  The Ca2+ affinity of the plasma membrane Ca2+ pump is controlled by alternative splicing. , 1994, The Journal of biological chemistry.

[32]  T. Stauffer,et al.  Quantitative analysis of alternative splicing options of human plasma membrane calcium pump genes. , 1993, The Journal of biological chemistry.

[33]  S. Chen,et al.  Regulation of the activity and phosphorylation of the plasma membrane Ca(2+)-ATPase by protein kinase C in intact human erythrocytes. , 1993, Archives of biochemistry and biophysics.

[34]  A. G. Filoteo,et al.  A highly active 120-kDa truncated mutant of the plasma membrane Ca2+ pump. , 1993, The Journal of biological chemistry.

[35]  T. Fujimoto Calcium pump of the plasma membrane is localized in caveolae , 1993, Journal of Cell Biology.

[36]  G. Shull,et al.  Alternative splicing of exons encoding the calmodulin-binding domains and C termini of plasma membrane Ca(2+)-ATPase isoforms 1, 2, 3, and 4. , 1993, The Journal of biological chemistry.

[37]  O. Scharff,et al.  Solitary calcium spike dependent on calmodulin and plasma membrane Ca2+ pump. , 1992, Cell calcium.

[38]  R. Neve,et al.  Expression of Plasma Membrane Calcium‐Pumping ATPase mRNAs in Developing Rat Brain and Adult Brain Subregions: Evidence for Stage‐Specific Expression , 1992, Journal of neurochemistry.

[39]  J. Andersen,et al.  Functional consequences of alterations to Glu309, Glu771, and Asp800 in the Ca(2+)-ATPase of sarcoplasmic reticulum. , 1992, The Journal of biological chemistry.

[40]  J. T. Penniston,et al.  Use of expression mutants and monoclonal antibodies to map the erythrocyte Ca2+ pump. , 1992, The Journal of biological chemistry.

[41]  J. T. Penniston,et al.  Localization of mRNAs coding for isozymes of plasma membrane Ca(2+)-ATPase pump in rat kidney. , 1992, The American journal of physiology.

[42]  E Carafoli,et al.  The Ca2+ pump of the plasma membrane. , 1992, The Journal of biological chemistry.

[43]  K. Wang,et al.  Hormone-induced phosphorylation of the plasma membrane calcium pump in cultured aortic endothelial cells. , 1991, Archives of biochemistry and biophysics.

[44]  K. Wang,et al.  Protein kinase C phosphorylates the carboxyl terminus of the plasma membrane Ca(2+)-ATPase from human erythrocytes. , 1991, The Journal of biological chemistry.

[45]  T. Vorherr,et al.  Peptide sequence analysis and molecular cloning reveal two calcium pump isoforms in the human erythrocyte membrane. , 1990, The Journal of biological chemistry.

[46]  J. Greeb,et al.  Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2+-transporting ATPase that is expressed predominantly in brain and skeletal muscle. , 1989, The Journal of biological chemistry.

[47]  T. Vorherr,et al.  Primary structure of the cAMP-dependent phosphorylation site of the plasma membrane calcium pump. , 1989, Biochemistry.

[48]  H. Rasmussen,et al.  Regulation of erythrocyte Ca2+ pump activity by protein kinase C. , 1988, The Journal of biological chemistry.

[49]  L. Reinlib,et al.  Phosphorylation of the Ca2+-pumping ATPase of heart sarcolemma and erythrocyte plasma membrane by the cAMP-dependent protein kinase. , 1985, The Journal of biological chemistry.

[50]  O. Scharff,et al.  Rate constants for calmodulin binding to Ca2+-ATPase in erythrocyte membranes. , 1982, Biochimica et biophysica acta.

[51]  P. Caroni,et al.  Regulation of Ca2+-pumping ATPase of heart sarcolemma by a phosphorylation-dephosphorylation Process. , 1981, The Journal of biological chemistry.

[52]  P. Caroni,et al.  THE Ca2+-ATPase OF HEART SARCOLEMMA , 1981 .

[53]  S. K. Boey,et al.  Plasma Membrane , 2005 .

[54]  C. Ide,et al.  Distribution of the plasmalemmal Ca2+-pump and caveolin in the corneal epithelium during the wound healing process , 1997 .

[55]  N. Green,et al.  The Mechanism of Ca 2 1 Transport by Sarco ( Endo ) plasmic Reticulum Ca 2 1-ATPases * , 1997 .

[56]  Y. Honda,et al.  Distribution of plasmalemmal Ca(2+)-pump and caveolin in the corneal epithelium during the wound healing process. , 1997, Current eye research.

[57]  M. Shigekawa,et al.  Ca(2+)-ATPase distributes differently in cardiac sarcolemma than dihydropyridine receptor alpha 1 subunit and Na+/Ca2+ exchanger. , 1994, FEBS letters.

[58]  M. Mooseker,et al.  Unconventional myosins. , 1995, Annual review of cell and developmental biology.

[59]  P. Pedersen,et al.  Ion motive ATPases. I. Ubiquity, properties, and significance to cell function , 1987 .