Shakedown Analysis by Elastic Simulation

Shakedown analysis of elastic plastic structures is widely credited as a valuable analytical/numerical tool for design purposes. For complex structures and loading conditions, e. g. for fast breeder nuclear reactor plants, full inelastic analysis is rarely performed, practically never within the early stages of the design advancement and the inherent decision process. The essential information therein needed can in fact be obtained, at moderate computational costs, by application of the shakedown methods and rules, at least within some limits related to the present developments of shakedown theory and its applicability to practical engineering problems, see e. g. Ponter et al. (1990), Carter et al. (1988), Ainsworth (1988), Goodall et al. (1991).

[1]  C. O. Frederick,et al.  Convergent internal stresses and steady cyclic states of stress , 1966 .

[2]  I. Roman,et al.  On adaptation (shakedown) of a class of damaged elastic plastic bodies to cyclic loading , 1998 .

[3]  S. Karadeniz,et al.  An Extended Shakedown Theory for Structures That Suffer Cyclic Thermal Loading, Part 1: Theory , 1985 .

[4]  Alberto Corigliano,et al.  Dynamic shakedown in elastoplastic structures with general internal variable constitutive laws , 1991 .

[5]  J. Kamenjarzh,et al.  On kinematic method in shakedown theory. I: Duality of extremum problems , 1994 .

[6]  D. Weichert On the influence of geometrical nonlinearities on the shakedown of elastic-plastic structures , 1986 .

[7]  Giulio Maier,et al.  Shakedown theorems for some classes of nonassociative hardening elastic-plastic material models , 1995 .

[8]  M. J. Sewell,et al.  Maximum and minimum principles , 1989, The Mathematical Gazette.

[9]  A. Cocks Lower-bound shakedown analysis of a simply supported plate carrying a uniformly distributed load and subjected to cyclic thermal loading , 1984 .

[10]  Jan A. König,et al.  Shakedown of Elastic-Plastic Structures , 1987 .

[11]  Alan R.S. Ponter,et al.  Limit state solutions, based upon linear elastic solutions with a spatially varying elastic modulus , 1997 .

[12]  John Brand Martin,et al.  Plasticity: Fundamentals and General Results , 1975 .

[13]  Alan R.S. Ponter,et al.  Shakedown state simulation techniques based on linear elastic solutions , 1997 .

[14]  Castrenze Polizzotto,et al.  On shakedown of elastic plastic solids , 1988 .

[15]  R. Hill The mathematical theory of plasticity , 1950 .

[16]  Jan A. König On Upper Bounds to Shakedown Loads , 1979 .

[17]  Alberto Corigliano,et al.  Dynamic shakedown analysis and bounds for elastoplastic structures with nonassociative, internal variable constitutive laws , 1995 .

[18]  Castrenze Polizzotto,et al.  On the Conditions to Prevent Plastic Shakedown of Structures: Part I—Theory , 1993 .

[19]  A. Ponter,et al.  Deformation, Displacement, and Work Bounds for Structures in a State of Creep and Subject to Variable Loading , 1972 .

[20]  Xi-Qiao Feng,et al.  Damage and shakedown analysis of structures with strain-hardening , 1995 .

[21]  E. Stein,et al.  Shakedown of a cracked body consisting of kinematic hardening material , 1996 .

[22]  H. Stumpf,et al.  Kinematical approach to the shakedown analysis of some structures , 1994 .

[23]  G. Borino Consistent shakedown theorems for materials with temperature dependent yield functions , 2000 .

[24]  Castrenze Polizzotto A Study on Plastic Shakedown of Structures: Part I—Basic Properties , 1993 .

[25]  D. Weichert,et al.  On kinematic upper bounds for the safety factor in shakedown theory , 1992 .

[26]  S. Caddemi,et al.  Shakedown problems for material models with internal variables , 1991 .

[27]  S. Karadeniz,et al.  An Extended Shakedown Theory for Structures That Suffer Cyclic Thermal Loading, Part 2: Applications , 1985 .

[28]  Philip G. Hodge,et al.  Limit Analysis of Structures at Thermal Cycling , 1980 .

[29]  Genbao Zhang,et al.  Shakedown with nonlinear strain-hardening including structural computation using finite element method , 1992 .

[30]  Giulio Maier,et al.  Shakedown analysis of elastoplastic structures: A review of recent developments , 1981 .

[31]  C. Polizzotto,et al.  Shakedown and steady-state responses of elastic-plastic solids in large displacements , 1996 .

[32]  Paolo Fuschi,et al.  Limit analysis for a general class of yield conditions , 2000 .

[33]  J. Z. Zhu,et al.  The finite element method , 1977 .

[34]  Castrenze Polizzotto On the Conditions to Prevent Plastic Shakedown of Structures: Part II—The Plastic Shakedown Limit Load , 1993 .

[35]  C. Polizzotto On elastic plastic structures under cyclic loads , 1994 .

[36]  D. Weichert,et al.  The numerical assessment of elastic-plastic sheets under variable mechanical and thermal loads using a simplified two-surface yield condition , 1988 .

[37]  C. Polizzotto Shakedown of elastic—plastic solids with frictionless unilateral contact boundary conditions , 1997 .

[38]  C. Polizzotto Elastic-Viscoplastic Solids Subjected to Thermal and Loading Cycles , 1995 .

[39]  P. Fuschi,et al.  The shakedown load boundary of an elastic-perfectly plastic structure , 1995 .