Global well-posedness for the 2D stable Muskat problem in $H^{3/2}$

We prove a global existence result of a unique strong solution in $\dot H^{5/2} \cap \dot H^{3/2}$ with small $\dot H^{3/2}$ norm for the 2D stable Muskat problem, hence allowing the interface to have arbitrary large finite slopes and finite energy (thanks to the $L^{2}$ maximum principle). The proof is based on the use of a new formulation of the Muskat equation that involves oscillatory terms. Then, a careful use of interpolation inequalities in homogeneneous Besov spaces allows us to close the {\emph{a priori}} estimates.

[1]  L. Sz'ekelyhidi Relaxation of the incompressible porous media equation , 2011, 1102.2597.

[2]  D. Córdoba,et al.  Contour Dynamics of Incompressible 3-D Fluids in a Porous Medium with Different Densities , 2007 .

[3]  Robert M. Strain,et al.  Large time decay estimates for the Muskat equation , 2016, 1610.05271.

[4]  Stephen Cameron Global well-posedness for the 2D Muskat problem with slope less than 1 , 2017 .

[5]  J. Escher,et al.  On the parabolicity of the Muskat problem: Well-posedness, fingering, and stability results , 2010, 1005.2512.

[6]  Andrej Zlatoš,et al.  A note on stability shifting for the Muskat problem , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  Andrej Zlatovs,et al.  A note on stability shifting for the Muskat problem, II: From stable to unstable and back to stable , 2015, 1512.02564.

[8]  C. Fefferman,et al.  Breakdown of Smoothness for the Muskat Problem , 2012, 1201.2525.

[9]  Craig T Simmons,et al.  The compleat Darcy: New lessons learned from the first English translation of les fontaines publiques de la Ville de Dijon , 2005, Ground water.

[10]  S. Shkoller,et al.  Well-posedness of the Muskat problem with H2 initial data , 2014, 1412.7737.

[11]  R. Caflisch,et al.  Global existence, singular solutions, and ill‐posedness for the Muskat problem , 2004 .

[12]  D. Córdoba,et al.  A Maximum Principle for the Muskat Problem for Fluids with Different Densities , 2007, 0712.1090.

[13]  P. Constantin,et al.  Global regularity for 2D Muskat equations with finite slope , 2015, 1507.01386.

[14]  Javier G'omez-Serrano,et al.  On turning waves for the inhomogeneous Muskat problem: a computer-assisted proof , 2013, 1311.0430.

[15]  D. C'ordoba,et al.  Mixing solutions for the Muskat problem , 2016, Inventiones mathematicae.

[16]  P. Lemarié–Rieusset The Navier-Stokes Problem in the 21st Century , 2016 .

[17]  Thomas Beck,et al.  Duchon–Robert solutions for the Rayleigh–Taylor and Muskat problems , 2012, 1209.1113.

[18]  M. Muskat Two Fluid Systems in Porous Media. The Encroachment of Water into an Oil Sand , 1934 .

[19]  Charles Fefferman,et al.  Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves , 2011, 1102.1902.

[20]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[21]  G. Taylor,et al.  The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  Robert M. Strain,et al.  On the global existence for the Muskat problem , 2010, 1007.3744.

[23]  F. García A survey for the Muskat problem and a new estimate , 2017 .

[24]  D. Ambrose Well-posedness of two-phase Hele–Shaw flow without surface tension , 2004, European Journal of Applied Mathematics.

[25]  Robert M. Strain,et al.  On the Muskat problem: Global in time results in 2D and 3D , 2013, 1310.0953.

[26]  F. Lin,et al.  On the Two‐Dimensional Muskat Problem with Monotone Large Initial Data , 2016, 1603.03949.

[27]  F. Otto Evolution of microstructure in unstable porous media flow: A relaxational approach , 1999 .

[28]  L. Székelyhidi,et al.  Piecewise Constant Subsolutions for the Muskat Problem , 2017, Communications in Mathematical Physics.

[29]  RAFAEL GRANERO-BELINCHÓN,et al.  Global Existence for the Confined Muskat Problem , 2013, SIAM J. Math. Anal..