Fracture Of Metals Part II : Ductile Fracture

Ductile fracture results from the nucleation, growth and coalescence of cavities. Nucleation starts from inclusions. Mechanics of inclusions is used to write the nucleation criterion. The growth rate can be derived from the deformation of a cavity in a plastic or viscous material. Plastic potentials of a porous plastic solid yields the rate of increase of the porosity. Recent studies introduce anisotropy of plastic behaviour or of morphology in the analysis. Coalescence of cavities occurs by flat dimple mode or by void sheet instability. The criteria used are either a critical growth rate of porosity or a condition of plastic instability. Finite elements calculations together with the preceding criteria are used to calculate the growth of a crack.

[1]  Jacques Besson,et al.  Size and geometry effects on ductile rupture of notched bars in a C-Mn steel: experiments and modelling , 1997 .

[2]  P. Thomason,et al.  A VIEW ON DUCTILE‐FRACTURE MODELLING , 1998 .

[3]  M. Elices,et al.  Particulate fracture during deformation , 1993, Metallurgical and Materials Transactions A.

[4]  K. Jata,et al.  The influence of Mn dispersoid content and stress state on ductile fracture of 2134 type Al alloys , 1989 .

[5]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[6]  Damage effect on the fracture toughness of nodular cast iron: Part I. Damage characterization and plastic flow stress modeling , 1997 .

[7]  C. Prioul,et al.  Damage effect on the fracture toughness of nodular cast iron: Part-II. Damage zone characterization ahead of a crack tip , 1997 .

[8]  T. B. Cox,et al.  An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 grade maraging steels , 1974, Metallurgical and Materials Transactions B.

[9]  Jacques Besson,et al.  Notch fracture toughness of a cast duplex stainless steel: modelling of experimental scatter and size effect , 1997 .

[10]  P. Roudier,et al.  DYNAMIC FRACTURE TOUGHNESS MEASUREMENTS AND LOCAL APPROACH MODELLING OF TITANIUM ALLOYS , 1996 .

[11]  Zhiliang Zhang,et al.  ANALYZING DUCTILE FRACTURE USING DUAL DILATIONAL CONSTITUTIVE EQUATIONS , 1994 .

[12]  R. J. Green,et al.  A plasticity theory for porous solids , 1972 .

[13]  A. Pineau,et al.  Crack initiation and stable crack growth resistance in A508 steels in relation to inclusion distribution , 1981 .

[14]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[15]  R. Cozar,et al.  Effect of crystallographic orientation of austenite on the formation of cleavage cracks in ferrite in an aged duplex stainless steel , 1990 .

[16]  Jean-Baptiste Leblond,et al.  Approximate Models for Ductile Metals Containing Nonspherical Voids—Case of Axisymmetric Oblate Ellipsoidal Cavities , 1994 .

[17]  K. Chawla,et al.  Mechanical Behavior of Materials , 1998 .

[18]  Franz Dieter Fischer,et al.  Critical shapes and arrangements of carbides in high-speed tool steel , 1997 .

[19]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[21]  Mohammed Tahar Applications de l'approche locale de la rupture fragile à l'acier 16 mnd5 : corrélation résilience-ténacité - probabilité de rupture bimodale (clivage et intergranulaire) , 1998 .

[22]  V. Tvergaard Influence of voids on shear band instabilities under plane strain conditions , 1981 .

[23]  F. Mcclintock Effects of root radius, stress, crack growth and rate on fracture instability , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  Jean-Baptiste Leblond,et al.  Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavities , 1993 .

[25]  Andreas Rossoll Détermination de la ténacité d'un acier faiblement allié à partir de l'essai Charpy instrumenté , 1998 .

[26]  C. Prioul,et al.  Damage effect on the fracture toughness of nodular cast iron: Part I. Damage characterization and plastic flow stress modeling , 1996 .

[27]  M. Zaidman,et al.  Constitutive models for porous materials with evolving microstructure , 1994 .

[28]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[29]  Viggo Tvergaard,et al.  Influence of void nucleation on ductile shear fracture at a free surface , 1982 .

[30]  Takehiko Mori,et al.  Cavity formation at the interface of a spherical inclusion in a plastically deformed matrix , 1970 .

[31]  Yonggang Huang,et al.  Accurate Dilatation Rates for Spherical Voids in Triaxial Stress Fields , 1991 .

[32]  A. Gurson Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction , 1988 .

[33]  K. T. Ramesh,et al.  The rate-dependent deformations of porous pure iron , 1997 .

[34]  John W. Hutchinson,et al.  Void Growth and Collapse in Viscous Solids , 1982 .

[35]  Viggo Tvergaard,et al.  Flow Localization in the Plane Strain Tensile Test , 1981 .

[36]  B. J. Lee,et al.  Stress concentration induced by an elastic spheroidal particle in a plastically deforming solid , 1999 .

[37]  Viggo Tvergaard,et al.  Effect of yield surface curvature and void nucleation on plastic flow localization , 1987 .

[38]  Alan Needleman,et al.  Void nucleation effects on shear localization in porous plastic solids , 1982 .

[39]  G. Perrin Contribution a l'etude theorique et numerique de la rupture ductile des metaux , 1992 .

[40]  R. Asaro,et al.  A study of void nucleation, growth, and coalescence in spheroidized 1518 steel , 1990 .

[41]  Plane-Strain Crack-Tip Fields for Pressure-Sensitive Dilatant Materials , 1990 .

[42]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[43]  A. Pineau,et al.  Global and Local Approaches of Fracture — Transferability of Laboratory Test Results to Components , 1992 .

[44]  J. Leblond,et al.  Analytical Study of the Coalescence of Cavities in Ductile Fracture of Metals , 1991 .

[45]  Owen Richmond,et al.  The effect of void shape on the development of damage and fracture in plane-strain tension , 1989 .

[46]  A. Pineau,et al.  Coalescence-Controlled Anisotropic Ductile Fracture , 1999 .