A self-consistent master equation and a new kind of cumulants

Generalized master equations correspond to different kinds of cumulants. Here, we discuss the recently introduced non-crossing cumulants from a physical point of view and propose the corresponding integro-differential master equation as a new type of equation for a self-consistent treatment of memory effects. We prove the cluster property of the non-crossing cumulants, and show that the Gaussian approximation of our equation is given by a random matrix process. As an instructive example for our expansion formula we treat the random frequency-modulated oscillator.

[1]  Yoshinori Takahashi,et al.  A generalized stochastic liouville equation. Non-Markovian versus memoryless master equations , 1977 .

[2]  H. Mori,et al.  Statistical-Mechanical Theory of Random Frequency Modulations and Generalized Brownian Motions , 1976 .

[3]  H. Horner Dynamic mean field theory of the SK-spin glass , 1984 .

[4]  F. Shibata,et al.  Quantal master equation valid for any time scale , 1977 .

[5]  H. Mori Transport, Collective Motion, and Brownian Motion , 1965 .

[6]  D. Voiculescu Limit laws for Random matrices and free products , 1991 .

[7]  N. G. Van Kampen,et al.  A cumulant expansion for stochastic linear differential equations. I , 1974 .

[8]  P. Chvosta Exact solution of a stochastic dimer problem with single-site energy modulation , 1991 .

[9]  T. Arimitsu,et al.  Expansion Formulas in Nonequilibrium Statistical Mechanics , 1980 .

[10]  H. Schulze,et al.  Noncommutative cumulants for stochastic differential equations and for generalized Dyson series , 1988 .

[11]  Boes,et al.  Statistical mechanics for networks of graded-response neurons. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[12]  Peter Hänggi,et al.  Microdynamics and time-evolution of macroscopic non-Markovian systems , 1977 .

[13]  Greenberg Particles with small violations of Fermi or Bose statistics. , 1991, Physical review. D, Particles and fields.

[14]  H. Sompolinsky,et al.  Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses , 1982 .

[15]  F. Shibata,et al.  From two-state jump to Gaussian stochastic processes , 1988 .

[16]  F. Shibata,et al.  Time-convolutionless projection operator formalism for elimination of fast variables. Applications to Brownian motion , 1979 .

[17]  S. Kirkpatrick,et al.  Infinite-ranged models of spin-glasses , 1978 .

[18]  E. Wigner Random Matrices in Physics , 1967 .

[19]  Ryogo Kubo,et al.  STOCHASTIC LIOUVILLE EQUATIONS , 1963 .

[20]  Roland Speicher,et al.  An example of a generalized Brownian motion , 1991 .

[21]  P. Hänggi,et al.  Time evolution, correlations, and linear response of non-Markov processes , 1977 .

[22]  D. Voiculescu Addition of certain non-commuting random variables , 1986 .

[23]  P. W. Anderson,et al.  A Mathematical Model for the Narrowing of Spectral Lines by Exchange or Motion , 1954 .

[24]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[25]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[26]  S. Nakajima On Quantum Theory of Transport Phenomena Steady Diffusion , 1958 .

[27]  Ryogo Kubo,et al.  Note on the Stochastic Theory of Resonance Absorption , 1954 .

[28]  R. Speicher A new example of ‘independence’ and ‘white noise’ , 1990 .

[29]  Robert H. Kraichnan,et al.  Irreversible Statistical Mechanics of Incompressible Hydromagnetic Turbulence , 1958 .

[30]  R. Speicher,et al.  Stochastic integration on the Cuntz algebra O , 1992 .

[31]  R. H. Terwiel Projection operator method applied to stochastic linear differential equations , 1974 .