A homogeneous matrix approach to 3D kinematics and dynamics — I. Theory

[1]  Gr Geert Veldkamp On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics , 1976 .

[2]  C. Spoor,et al.  Rigid body motion calculated from spatial co-ordinates of markers. , 1980, Journal of biomechanics.

[3]  R. Paul Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .

[4]  Hendrik Van Brussel,et al.  Software for solving the inverse kinematic problem for robot manipulators in real time , 1983 .

[5]  J. Casey,et al.  A tensor method for the kinematical analysis of systems of ridid bodies , 1986 .

[6]  Kenneth H. Hunt Special configurations of robot-arms via screw theory , 1986, Robotica.

[7]  Barry I. Soroka Advanced software in robotics , 1987, IEEE J. Robotics Autom..

[8]  M. Vukobratovic,et al.  Applied Dynamics of Manipulation Robots , 1989 .

[9]  D. Chevallier,et al.  Lie algebras, modules, dual quaternions and algebraic methods in kinematics , 1991 .

[10]  A Complete Notation for Dual Velocity , 1992 .

[11]  K. H. Hunt,et al.  Spatial motion-II: Acceleration and the differential geometry of screws , 1992 .

[12]  T. S. Sankar,et al.  Fast inverse dynamics computation in real-time robot control , 1992 .

[13]  K. H. Hunt,et al.  Spatial motion-I: Points of inflection and the differential geometry of screws , 1992 .

[15]  Sunil K. Agrawal Multibody Dynamics: A Formulation Using Kane’s Method and Dual Vectors , 1993 .

[16]  Yueh-Jaw Lin,et al.  Simplification of manipulator dynamic formulations utilizing a dimensionless method , 1993, Robotica.

[17]  Krzysztof Kozlowski,et al.  Computational requirements for a discrete Kalman filter in robot dynamics algorithms , 1993, Robotica.

[18]  T. S. Sankar,et al.  Development of efficient closed-form dynamic equations for robot manipulators using parallel and perpendicular concepts , 1993 .