A homogeneous matrix approach to 3D kinematics and dynamics — I. Theory
暂无分享,去创建一个
[1] Gr Geert Veldkamp. On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics , 1976 .
[2] C. Spoor,et al. Rigid body motion calculated from spatial co-ordinates of markers. , 1980, Journal of biomechanics.
[3] R. Paul. Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .
[4] Hendrik Van Brussel,et al. Software for solving the inverse kinematic problem for robot manipulators in real time , 1983 .
[5] J. Casey,et al. A tensor method for the kinematical analysis of systems of ridid bodies , 1986 .
[6] Kenneth H. Hunt. Special configurations of robot-arms via screw theory , 1986, Robotica.
[7] Barry I. Soroka. Advanced software in robotics , 1987, IEEE J. Robotics Autom..
[8] M. Vukobratovic,et al. Applied Dynamics of Manipulation Robots , 1989 .
[9] D. Chevallier,et al. Lie algebras, modules, dual quaternions and algebraic methods in kinematics , 1991 .
[10] A Complete Notation for Dual Velocity , 1992 .
[11] K. H. Hunt,et al. Spatial motion-II: Acceleration and the differential geometry of screws , 1992 .
[12] T. S. Sankar,et al. Fast inverse dynamics computation in real-time robot control , 1992 .
[13] K. H. Hunt,et al. Spatial motion-I: Points of inflection and the differential geometry of screws , 1992 .
[15] Sunil K. Agrawal. Multibody Dynamics: A Formulation Using Kane’s Method and Dual Vectors , 1993 .
[16] Yueh-Jaw Lin,et al. Simplification of manipulator dynamic formulations utilizing a dimensionless method , 1993, Robotica.
[17] Krzysztof Kozlowski,et al. Computational requirements for a discrete Kalman filter in robot dynamics algorithms , 1993, Robotica.
[18] T. S. Sankar,et al. Development of efficient closed-form dynamic equations for robot manipulators using parallel and perpendicular concepts , 1993 .