On Implications between P-NP-Hypotheses: Decision versus Computation in Algebraic Complexity
暂无分享,去创建一个
[1] On Randomized Semi-algebraic Test Complexity , 1993, J. Complex..
[2] Pascal Koiran. A Weak Version of the Blum, Shub, and Smale Model , 1997, J. Comput. Syst. Sci..
[3] Peter Bürgisser. The Complexity of Factors of Multivariate Polynomials , 2001, FOCS.
[4] Joos Heintz,et al. On the Intrinsic Complexity of Elimination Theory , 1993, J. Complex..
[5] Louise Larose. Les petits cailloux , 1998 .
[6] K. Ramachandra,et al. Vermeidung von Divisionen. , 1973 .
[7] Leslie G. Valiant,et al. Fast Parallel Computation of Polynomials Using Few Processors , 1983, SIAM J. Comput..
[8] Leslie G. Valiant,et al. The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..
[9] Pascal Koiran,et al. Are Lower Bounds Easier over theReals ? , 1998 .
[10] Pascal Koiran. Computing over the Reals with Addition and Order , 1994, Theor. Comput. Sci..
[11] Marek Karpinski,et al. On real Turing machines that toss coins , 1995, STOC '95.
[12] Peter Bürgisser. Cook's versus Valiant's hypothesis , 2000, Theor. Comput. Sci..
[13] Thomas Lickteig,et al. Test complexity of generic polynomials , 1992, J. Complex..
[14] Erich Kaltofen. Single-factor Hensel lifting and its application to the straight-line complexity of certain polynomials , 1987, STOC '87.
[15] Joos Heintz,et al. Time-Space Tradeoffs in Algebraic Complexity Theory , 2000, J. Complex..
[16] Peter Bürgisser,et al. On the Structure of Valiant's Complexity Classes , 1998, Discret. Math. Theor. Comput. Sci..
[17] Pascal Koiran,et al. Lower Bounds Are Not Easier over the Reals: Inside PH , 2000, ICALP.
[18] Kyriakos Kalorkoti. ALGEBRAIC COMPLEXITY THEORY (Grundlehren der Mathematischen Wissenschaften 315) , 1999 .
[19] Peter Bürgisser,et al. Completeness and Reduction in Algebraic Complexity Theory , 2000, Algorithms and computation in mathematics.
[20] S. Meiser,et al. Point Location in Arrangements of Hyperplanes , 1993, Inf. Comput..
[21] Walter Baur,et al. Simplified Lower Bounds for Polynomials with Algebraic Coefficients , 1997, J. Complex..
[22] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[23] Walter Baur,et al. On lower bounds for the complexity of polynomials and their multiples , 1999, computational complexity.
[24] S. Smale,et al. On a theory of computation and complexity over the real numbers; np-completeness , 1989 .
[25] Leslie G. Valiant,et al. Completeness classes in algebra , 1979, STOC.
[26] Lenore Blum,et al. Complexity and Real Computation , 1997, Springer New York.
[27] Marek Karpinski,et al. Randomized ( n 2 ) Lower Bound for , 2007 .
[28] Alex Samorodnitsky,et al. A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 2000, Comb..
[29] Alan L. Selman,et al. Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..
[30] Eric Vigoda,et al. A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries , 2001, STOC '01.
[31] M. Shub,et al. On The Intractability Of Hilbert's Nullstellensatz And An Algebraic Version Of . . , 1995 .
[32] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[33] Bernhard Griesser. Lower Bounds for the Approximative Complexity , 1986, Theor. Comput. Sci..
[34] Joachim von zur Gathen,et al. Feasible Arithmetic Computations: Valiant's Hypothesis , 1987, J. Symb. Comput..
[35] Pascal Koiran,et al. Circuits versus Trees in Algebraic Complexity , 2000, STACS.
[36] Richard J. Lipton,et al. Evaluation of Polynomials with Super-Preconditioning , 1978, J. Comput. Syst. Sci..
[37] A. Barvinok. Polynomial time algorithms to approximate permanents and mixed discriminants within a simply exponential factor , 1999 .
[38] Erich Kaltofen,et al. Factorization of Polynomials Given by Straight-Line Programs , 1989, Adv. Comput. Res..
[39] Friedhelm Meyer auf der Heide. Fast algorithms for N-dimensional restrictions of hard problems , 1988, JACM.
[40] Felipe Cucker,et al. Algebraic Settings for the Problem “P ≠ NP?” , 1998 .
[41] Friedhelm Meyer auf der Heide,et al. Simulating Probabilistic by Deterministic Algebraic Computation Trees , 1985, Theor. Comput. Sci..