On Implications between P-NP-Hypotheses: Decision versus Computation in Algebraic Complexity

Several models of NP-completeness in an algebraic framework of computation have been proposed in the past, each of them hinging on a fundamental hypothesis of type P≠NP. We first survey some known implications between such hypotheses and then describe attempts to establish further connections. This leads us to the problem of relating the complexity of computational and decisional tasks and naturally raises the question about the connection of the complexity of a polynomial with those of its factors. After reviewing what is known with this respect, we discuss a new result involving a concept of approximative complexity.

[1]  On Randomized Semi-algebraic Test Complexity , 1993, J. Complex..

[2]  Pascal Koiran A Weak Version of the Blum, Shub, and Smale Model , 1997, J. Comput. Syst. Sci..

[3]  Peter Bürgisser The Complexity of Factors of Multivariate Polynomials , 2001, FOCS.

[4]  Joos Heintz,et al.  On the Intrinsic Complexity of Elimination Theory , 1993, J. Complex..

[5]  Louise Larose Les petits cailloux , 1998 .

[6]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[7]  Leslie G. Valiant,et al.  Fast Parallel Computation of Polynomials Using Few Processors , 1983, SIAM J. Comput..

[8]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[9]  Pascal Koiran,et al.  Are Lower Bounds Easier over theReals ? , 1998 .

[10]  Pascal Koiran Computing over the Reals with Addition and Order , 1994, Theor. Comput. Sci..

[11]  Marek Karpinski,et al.  On real Turing machines that toss coins , 1995, STOC '95.

[12]  Peter Bürgisser Cook's versus Valiant's hypothesis , 2000, Theor. Comput. Sci..

[13]  Thomas Lickteig,et al.  Test complexity of generic polynomials , 1992, J. Complex..

[14]  Erich Kaltofen Single-factor Hensel lifting and its application to the straight-line complexity of certain polynomials , 1987, STOC '87.

[15]  Joos Heintz,et al.  Time-Space Tradeoffs in Algebraic Complexity Theory , 2000, J. Complex..

[16]  Peter Bürgisser,et al.  On the Structure of Valiant's Complexity Classes , 1998, Discret. Math. Theor. Comput. Sci..

[17]  Pascal Koiran,et al.  Lower Bounds Are Not Easier over the Reals: Inside PH , 2000, ICALP.

[18]  Kyriakos Kalorkoti ALGEBRAIC COMPLEXITY THEORY (Grundlehren der Mathematischen Wissenschaften 315) , 1999 .

[19]  Peter Bürgisser,et al.  Completeness and Reduction in Algebraic Complexity Theory , 2000, Algorithms and computation in mathematics.

[20]  S. Meiser,et al.  Point Location in Arrangements of Hyperplanes , 1993, Inf. Comput..

[21]  Walter Baur,et al.  Simplified Lower Bounds for Polynomials with Algebraic Coefficients , 1997, J. Complex..

[22]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[23]  Walter Baur,et al.  On lower bounds for the complexity of polynomials and their multiples , 1999, computational complexity.

[24]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[25]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[26]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[27]  Marek Karpinski,et al.  Randomized ( n 2 ) Lower Bound for , 2007 .

[28]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 2000, Comb..

[29]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[30]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries , 2001, STOC '01.

[31]  M. Shub,et al.  On The Intractability Of Hilbert's Nullstellensatz And An Algebraic Version Of . . , 1995 .

[32]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[33]  Bernhard Griesser Lower Bounds for the Approximative Complexity , 1986, Theor. Comput. Sci..

[34]  Joachim von zur Gathen,et al.  Feasible Arithmetic Computations: Valiant's Hypothesis , 1987, J. Symb. Comput..

[35]  Pascal Koiran,et al.  Circuits versus Trees in Algebraic Complexity , 2000, STACS.

[36]  Richard J. Lipton,et al.  Evaluation of Polynomials with Super-Preconditioning , 1978, J. Comput. Syst. Sci..

[37]  A. Barvinok Polynomial time algorithms to approximate permanents and mixed discriminants within a simply exponential factor , 1999 .

[38]  Erich Kaltofen,et al.  Factorization of Polynomials Given by Straight-Line Programs , 1989, Adv. Comput. Res..

[39]  Friedhelm Meyer auf der Heide Fast algorithms for N-dimensional restrictions of hard problems , 1988, JACM.

[40]  Felipe Cucker,et al.  Algebraic Settings for the Problem “P ≠ NP?” , 1998 .

[41]  Friedhelm Meyer auf der Heide,et al.  Simulating Probabilistic by Deterministic Algebraic Computation Trees , 1985, Theor. Comput. Sci..