Number field lattices achieve Gaussian and Rayleigh channel capacity within a constant gap

This paper shows that a family of number field lattice codes simultaneously achieves a constant gap to capacity in Rayleigh fast fading and Gaussian channels. The key property in the proof is the existence of infinite towers of Hilbert class fields with bounded root discriminant. The gap to capacity of the proposed lattice codes is determined by the root discriminant. The comparison between the Gaussian and fading case reveals that in Rayleigh fading channels the normalized minimum product distance plays an analogous role to the Hermite invariant in Gaussian channels.

[1]  Rüdiger L. Urbanke,et al.  Lattice Codes Can Achieve Capacity on the AWGN Channel , 1998, IEEE Trans. Inf. Theory.

[2]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[3]  Frédérique E. Oggier,et al.  Algebraic lattice constellations: bounds on performance , 2006, IEEE Transactions on Information Theory.

[4]  Jacques Martinet,et al.  Tours de corps de classes et estimations de discriminants , 1978 .

[5]  Emanuele Viterbo,et al.  Good lattice constellations for both Rayleigh fading and Gaussian channels , 1996, IEEE Trans. Inf. Theory.

[6]  Yanfei Yan,et al.  Polar Lattices: Where Arikan Meets Forney , 2013, ArXiv.

[7]  S. Litsyn,et al.  Constructive high-dimensional sphere packings , 1987 .

[8]  Uri Erez,et al.  Achieving 1/2 log (1+SNR) on the AWGN channel with lattice encoding and decoding , 2004, IEEE Transactions on Information Theory.

[9]  Helmut Bölcskei,et al.  Tight lower bounds on the ergodic capacity of Rayleigh fading MIMO channels , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[10]  Farshid Hajir,et al.  Asymptotically Good Towers of Global Fields , 2001 .

[11]  Hans-Andrea Loeliger,et al.  Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.

[12]  Rudi de Buda,et al.  Some optimal codes have structure , 1989, IEEE J. Sel. Areas Commun..

[13]  Chaoping Xing,et al.  Diagonal Lattice Space–Time Codes From Number Fields and Asymptotic Bounds , 2007, IEEE Transactions on Information Theory.

[14]  Yanfei Yan,et al.  Polar lattices: Where Arıkan meets Forney , 2013, 2013 IEEE International Symposium on Information Theory.

[15]  P. Massart,et al.  Adaptive estimation of a quadratic functional by model selection , 2000 .

[16]  Sae-Young Chung,et al.  Sphere-bound-achieving coset codes and multilevel coset codes , 2000, IEEE Trans. Inf. Theory.

[17]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[18]  XingChaoping Diagonal Lattice Space–Time Codes From Number Fields and Asymptotic Bounds , 2007 .

[19]  Roope Vehkalahti,et al.  Division algebra codes achieve MIMO block fading channel capacity within a constant gap , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).