Landauer's principle and non-equilibrium statistical ensembles

Abstract Landauer's principle is fundamental for the physics of information. It establishes the least amount of energy that needs to be dissipated in order to erase a bit of information. Using the Beck–Cohen representation of statistical ensemble distributions, we explore an extension of Landauer's principle to systems out of equilibrium.

[1]  B. Frieden Physics from Fisher information , 1998 .

[2]  R. Feynman Statistical Mechanics, A Set of Lectures , 1972 .

[3]  Christian Beck Statistics of three-dimensional lagrangian turbulence. , 2007, Physical review letters.

[4]  Andreas Daffertshofer,et al.  Forgetting and gravitation : From Landauer's principle to Tolman's temperature , 2007 .

[5]  Superstatistics, escort distributions, and applications , 2003, cond-mat/0312134.

[6]  H. Swinney,et al.  Velocity difference statistics in turbulence. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  C. Tsallis,et al.  Nonextensive Entropy: Interdisciplinary Applications , 2004 .

[8]  A. Plastino,et al.  Nonextensive thermostatistics and the H theorem. , 2001, Physical review letters.

[9]  L. M. Varela,et al.  Nonextensive statistical mechanics of ionic solutions , 2007 .

[10]  B. Frieden,et al.  Lagrangians of physics and the game of Fisher-information transfer. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Andreas Daffertshofer,et al.  Landauer's principle and the conservation of information , 2005 .

[12]  Christian Beck Dynamical Foundations of Nonextensive Statistical Mechanics , 2001 .

[13]  Christian Beck,et al.  From time series to superstatistics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Superstatistics in hydrodynamic turbulence , 2003, physics/0303061.

[15]  Seth Lloyd,et al.  Obituary: Rolf Landauer (1927-99) , 1999, Nature.

[16]  Hugo Touchette,et al.  Asymptotics of superstatistics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  B. Frieden Science from Fisher Information , 2004 .

[18]  Takuya Yamano,et al.  Thermodynamical and Informational Structure of Superstatistics , 2006 .

[19]  Michael W. Deem,et al.  Mathematical adventures in biology , 2007 .

[20]  Bernard H. Soffer,et al.  Information-theoretic significance of the Wigner distribution , 2006 .

[21]  A Daffertshofer,et al.  Classical no-cloning theorem. , 2002, Physical review letters.

[22]  C. Beck,et al.  Superstatistical generalization of the work fluctuation theorem , 2004 .

[23]  W. Loewenstein,et al.  The Touchstone of Life: Molecular Information, Cell Communication, and the Foundations of Life , 1999 .

[24]  M. B. Plenio,et al.  The physics of forgetting: Landauer's erasure principle and information theory , 2001, quant-ph/0103108.

[25]  Hermann Haken,et al.  Synergetics: An Introduction , 1983 .

[26]  W. H. Zurek Complexity, Entropy and the Physics of Information , 1990 .

[27]  S. Lloyd Computational capacity of the universe. , 2001, Physical review letters.

[28]  Constantino Tsallis,et al.  Constructing a statistical mechanics for Beck-Cohen superstatistics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Claudia Zander,et al.  Entanglement and the speed of evolution of multi-partite quantum systems , 2007 .

[30]  A Daffertshofer,et al.  Liouville dynamics and the conservation of classical information. , 2004, Physical review letters.

[31]  N. Margolus,et al.  The maximum speed of dynamical evolution , 1997, quant-ph/9710043.

[32]  C. Caves,et al.  Quantum limits on bosonic communication rates , 1994 .

[33]  Non-additivity of Tsallis entropies and fluctuations of temperature , 2001, cond-mat/0105371.

[34]  A. Plastino,et al.  Entanglement and the lower bounds on the speed of quantum , 2006, quant-ph/0608249.

[35]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .