Engineering Turbulence Models and their Development, with Emphasis on Explicit Algebraic Reynolds Stress Models

Single-point turbulence models will be discussed from a somewhat analytical point of view. The lowest level of modelling considered here is that of eddy-viscosity-based two-equation models, but particular attention is given to explicit algebraic Reynolds stress models (and explicit algebraic scalar flux models). Some new trends in models based directly on the Reynolds stress transport equations are also discussed.

[1]  J. Chasnov SIMILARITY STATES OF PASSIVE SCALAR TRANSPORT IN ISOTROPIC TURBULENCE , 1994 .

[2]  P. Durbin On the k-3 stagnation point anomaly , 1996 .

[3]  Dale B. Taulbee,et al.  Stress relation for three‐dimensional turbulent flows , 1994 .

[4]  A. Johansson,et al.  An algebraic model for nonisotropic turbulent dissipation rate in Reynolds stress closures , 1990 .

[5]  W. Reynolds Computation of Turbulent Flows , 1975 .

[6]  DNS and Modelling of Passive Scalar Transport in Turbulent Channel Flow with a Focus on Scalar Dissipation Rate Modelling , 2000 .

[7]  B. Launder,et al.  Ground effects on pressure fluctuations in the atmospheric boundary layer , 1978, Journal of Fluid Mechanics.

[8]  R. Kristoffersen,et al.  Direct simulations of low-Reynolds-number turbulent flow in a rotating channel , 1993, Journal of Fluid Mechanics.

[9]  Hans Edelmann,et al.  Vier Woodbury-Formeln hergeleitet aus dem Variablentausch einer speziellen Matrix , 1976 .

[10]  Francis H. Harlow,et al.  Transport Equations in Turbulence , 1970 .

[11]  S. Girimaji Fully explicit and self-consistent algebraic Reynolds stress model , 1995 .

[12]  J. Lumley,et al.  A Realizable Reynolds Stress Algebraic Equation Model , 1993 .

[13]  Arne V. Johansson,et al.  A New Explicit Algebraic Reynolds Stress Model , 1996 .

[14]  T. Gatski,et al.  Accounting for Reynolds stress and dissipation rate anisotropies in inertial and noninertial frames , 1998 .

[15]  R. M. C. So,et al.  Near-wall modeling of the dissipation rate equation , 1991 .

[16]  F. Menter ZONAL TWO EQUATION k-w TURBULENCE MODELS FOR AERODYNAMIC FLOWS , 1993 .

[17]  G. Batchelor,et al.  The theory of homogeneous turbulence , 1954 .

[18]  D. Naot,et al.  Two‐point correlation model and the redistribution of Reynolds stresses , 1973 .

[19]  J. Piquet Turbulent Flows: Models and Physics , 1999 .

[20]  John L. Lumley,et al.  Computational Modeling of Turbulent Flows , 1978 .

[21]  A. Johansson,et al.  Measurement and modelling of homogeneous axisymmetric turbulence , 1998, Journal of Fluid Mechanics.

[22]  Wolfgang Rodi,et al.  Low Reynolds number k—ε modelling with the aid of direct simulation data , 1993, Journal of Fluid Mechanics.

[23]  W. Rodi A new algebraic relation for calculating the Reynolds stresses , 1976 .

[24]  Charles G. Speziale,et al.  ANALYTICAL METHODS FOR THE DEVELOPMENT OF REYNOLDS-STRESS CLOSURES IN TURBULENCE , 1990 .

[25]  T. Gatski,et al.  Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach , 1991, Journal of Fluid Mechanics.

[26]  T. Gatski,et al.  On explicit algebraic stress models for complex turbulent flows , 1992, Journal of Fluid Mechanics.

[27]  S. Balachandar,et al.  Analysis and Modeling of Buoyancy Generated Turbulence Using Numerical Data , 1997 .

[28]  S. Wallin,et al.  Derivation and investigation of a new explicit algebraic model for the passive scalar flux , 2000 .

[29]  J. Cousteix,et al.  MIS: A Way to Derive the Dissipation Equation , 1989 .

[30]  Martin Skote,et al.  Reynolds Stress Budgets in Couette and Boundary Layer Flows , 2002 .

[31]  P. Saffman,et al.  A model for inhomogeneous turbulent flow , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  Dale B. Taulbee,et al.  An improved algebraic Reynolds stress model and corresponding nonlinear stress model , 1992 .

[33]  John L. Lumley,et al.  Second-order modeling of near-wall turbulence , 1986 .

[34]  John Kim,et al.  On the structure of pressure fluctuations in simulated turbulent channel flow , 1989, Journal of Fluid Mechanics.

[35]  A. Johansson,et al.  Modelling of rapid pressure—strain in Reynolds-stress closures , 1994, Journal of Fluid Mechanics.

[36]  Arne V. Johansson,et al.  Development and calibration of algebraic nonlinear models for terms in the Reynolds stress transport equations , 2000 .

[37]  S. Girimaji Improved algebraic Reynolds stress model for engineering flows , 1996 .

[38]  A.J.M. Spencer,et al.  The theory of matrix polynomials and its application to the mechanics of isotropic continua , 1958 .

[39]  Charles G. Speziale,et al.  Towards the development of second-order closure models for nonequilibrium turbulent flows , 1996 .

[40]  Stavros Tavoularis,et al.  Experiments in nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 1 , 1981, Journal of Fluid Mechanics.

[41]  P. Chou On velocity correlations and the solutions of the equations of turbulent fluctuation , 1945 .

[42]  S. Corrsin,et al.  Experiments on nearly homogeneous turbulent shear flow , 1970, Journal of Fluid Mechanics.

[43]  Shigeki Imao,et al.  Turbulent characteristics of the flow in an axially rotating pipe , 1996 .

[44]  B. Launder,et al.  Progress in the development of a Reynolds-stress turbulence closure , 1975, Journal of Fluid Mechanics.

[45]  Arne V. Johansson,et al.  An Introduction to Turbulence Modelling , 1999 .

[46]  J. Rotta,et al.  Statistische Theorie nichthomogener Turbulenz , 1951 .

[47]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[48]  P. Saffman The large-scale structure of homogeneous turbulence , 1967, Journal of Fluid Mechanics.

[49]  T. Shih,et al.  A spectrum model for weakly anisotropic turbulence , 1990 .

[50]  Sharath S. Girimaji,et al.  A Galilean invariant explicit algebraic Reynolds stress model for turbulent curved flows , 1997 .

[51]  F. Menter Improved two-equation k-omega turbulence models for aerodynamic flows , 1992 .

[52]  S. Pope A more general effective-viscosity hypothesis , 1975, Journal of Fluid Mechanics.

[53]  C. G. Speziale,et al.  Critical Evaluation of Two-Equation Models for Near-Wall Turbulence , 1992 .

[54]  Bassam A. Younis,et al.  A second-moment closure study of rotating channel flow , 1987, Journal of Fluid Mechanics.

[55]  B. Launder,et al.  Mathematical Models of turbulence , 1972 .

[56]  Arne V. Johansson,et al.  An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows , 2000, Journal of Fluid Mechanics.

[57]  D. Wilcox Turbulence modeling for CFD , 1993 .

[58]  Klaus Bremhorst,et al.  A Modified Form of the k-ε Model for Predicting Wall Turbulence , 1981 .

[59]  Per-Åke Lindberg Near-wall Turbulence Models for 3D Boundary Layers , 1994 .

[60]  S. Corrsin,et al.  The use of a contraction to improve the isotropy of grid-generated turbulence , 1966, Journal of Fluid Mechanics.