Excitonic superfluid phase in double bilayer graphene

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  Jung-jung Su,et al.  Spatially indirect exciton condensate phases in double bilayer graphene , 2016, 1611.06410.

[3]  T. Taniguchi,et al.  Negative Coulomb Drag in Double Bilayer Graphene. , 2016, Physical review letters.

[4]  F. Peeters,et al.  Enhancement of electron-hole superfluidity in double few-layer graphene , 2014, Scientific Reports.

[5]  B. Halperin,et al.  Electron-hole asymmetric integer and fractional quantum Hall effect in bilayer graphene , 2013, Science.

[6]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[7]  W. Halperin,et al.  The superfluid glass phase of 3He-A , 2013, Nature Physics.

[8]  J. Eisenstein Exciton Condensation in Bilayer Quantum Hall Systems , 2013, 1306.0584.

[9]  J. Lambert,et al.  Quantum Hall ferromagnetic phases in the Landau levelN=0of a graphene bilayer , 2013, 1301.3094.

[10]  A Perali,et al.  High-temperature superfluidity in double-bilayer graphene. , 2012, Physical review letters.

[11]  A. Mirlin,et al.  Coulomb drag in graphene near the Dirac point. , 2012, Physical review letters.

[12]  M. I. Katsnelson,et al.  Strong Coulomb drag and broken symmetry in double-layer graphene , 2012, Nature Physics.

[13]  L. Levitov,et al.  Energy-driven drag at charge neutrality in graphene. , 2012, Physical review letters.

[14]  K. West,et al.  Exciton condensation and perfect Coulomb drag , 2012, Nature.

[15]  A. Gossard,et al.  Spontaneous coherence in a cold exciton gas , 2011, Nature.

[16]  S. Sarma,et al.  Coulomb drag in monolayer and bilayer graphene , 2011, 1111.5022.

[17]  Z. Yao,et al.  Coulomb drag of massless fermions in graphene , 2010, 1010.2113.

[18]  J. Reno,et al.  Coulomb drag in the exciton regime in electron-hole bilayers. , 2008, Physical review letters.

[19]  K. West,et al.  Charge imbalance and bilayer two-dimensional electron systems at nuT=1 , 2008, 0808.1257.

[20]  H. Min,et al.  Room-temperature superfluidity in graphene bilayers , 2008, 0802.3462.

[21]  A. MacDonald,et al.  How to make a bilayer exciton condensate flow , 2008, 0801.3694.

[22]  V. Fal’ko,et al.  Landau-level degeneracy and quantum Hall effect in a graphite bilayer. , 2005, Physical review letters.

[23]  W. Wegscheider,et al.  Activated transport in the separate layers that form the nuT=1 exciton condensate. , 2004, Physical review letters.

[24]  A. MacDonald,et al.  Bose–Einstein condensation of excitons in bilayer electron systems , 2004, Nature.

[25]  D. Huse,et al.  Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing. , 2004, Physical review letters.

[26]  K. West,et al.  Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system. , 2004, Physical review letters.

[27]  Y. Joglekar,et al.  Bias-voltage-induced phase transition in bilayer quantum Hall ferromagnets , 2001, cond-mat/0111056.

[28]  K. West,et al.  Observation of quantized Hall drag in a strongly correlated bilayer electron system. , 2001, Physical review letters.

[29]  West,et al.  New fractional quantum Hall state in double-layer two-dimensional electron systems. , 1992, Physical review letters.

[30]  Price,et al.  New phenomena in coupled transport between 2D and 3D electron-gas layers. , 1989, Physical review letters.

[31]  Y. Lozovik,et al.  New mechanism for superconductivity: pairing between spatially separated electrons and holes , 1976 .

[32]  Y. Lozovik,et al.  Feasibility of superfluidity of paired spatially separated electrons and holes; a new superconductivity mechanism , 1975 .

[33]  John M. Blatt,et al.  Bose-Einstein Condensation of Excitons , 1962 .