Tightening non-simple paths and cycles on surfaces

We describe algorithms to compute the shortest path homotopic to a given path, or the shortest cycle freely homotopic to a given cycle, on an orientable combinatorial surface. Unlike earlier results, our algorithms do not require the input path or cycle to be simple. Given a surface with complexity n, genus g ≥ 2, and no boundary, we construct in O(n2 log n) time a tight octagonal decomposition of the surface---a set of simple cycles, each as short as possible in its free homotopy class, that decompose the surface into a complex of octagons meeting four at a vertex. After the surface is preprocessed, we can compute the shortest path homotopic to a given path of complexity k in O(gnk) time, or the shortest cycle homotopic to a given cycle of complexity k in O(gnk log(nk)) time. A similar algorithm computes shortest homotopic curves on surfaces with boundary or with genus 1. We also prove that the recent algorithms of Colin de Verdière and Lazarus for shortening embedded graphs and sets of cycles have running times polynomial in the complexity of the surface and the input curves, regardless of the surface geometry.

[1]  Bojan Mohar,et al.  Finding Shortest Non-separating and Non-contractible Cycles for Topologically Embedded Graphs , 2005, ESA.

[2]  Francis Lazarus,et al.  Optimal System of Loops on an Orientable Surface , 2005, Discret. Comput. Geom..

[3]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[4]  Bojan Mohar,et al.  Finding one tight cycle , 2008, SODA '08.

[5]  Jack Snoeyink,et al.  Testing Homotopy for Paths in the Plane , 2004, Discret. Comput. Geom..

[6]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[7]  John Hershberger,et al.  Computing Minimum Length Paths of a Given Homotopy Class (Extended Abstract) , 1991, WADS.

[8]  M. Dehn Transformation der Kurven auf zweiseitigen Flächen , 1912 .

[9]  David Eppstein,et al.  Dynamic generators of topologically embedded graphs , 2002, SODA '03.

[10]  J. Hass,et al.  Intersections of curves on surfaces , 1985 .

[11]  Haijo Schipper,et al.  Determining contractibility of curves , 1992, SCG '92.

[12]  李幼升,et al.  Ph , 1989 .

[13]  D. Epstein Curves on 2-manifolds and isotopies , 1966 .

[14]  John H. Reif,et al.  Minimum s-t Cut of a Planar Undirected Network in O(n log2(n)) Time , 1983, SIAM J. Comput..

[15]  R. Ho Algebraic Topology , 2022 .

[16]  Anne Verroust-Blondet,et al.  Computing a canonical polygonal schema of an orientable triangulated surface , 2001, SCG '01.

[17]  J. Stillwell Classical topology and combinatorial group theory , 1980 .

[18]  Martin Kutz,et al.  Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost linear time , 2005, SCG '06.

[19]  Chee-Keng Yap,et al.  Computational complexity of combinatorial surfaces , 1990, SCG '90.

[20]  Francis Lazarus,et al.  Optimal Pants Decompositions and Shortest Homotopic Cycles on an Orientable Surface , 2003, Graph Drawing.

[21]  Sergey Bereg,et al.  Computing homotopic shortest paths in the plane , 2003, SODA.

[22]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[23]  Jeff Erickson,et al.  Greedy optimal homotopy and homology generators , 2005, SODA '05.

[24]  Stephen G. Kobourov,et al.  Computing homotopic shortest paths efficiently , 2006, Comput. Geom..

[25]  Philip N. Klein,et al.  Multiple-source shortest paths in planar graphs , 2005, SODA '05.

[26]  Eric Colin de Verdière Raccourcissement de courbes et décomposition de surfaces , 2003 .

[27]  Tamal K. Dey,et al.  A new technique to compute polygonal schema for 2-manifolds with application to null-homotopy detection , 1995, Discret. Comput. Geom..

[28]  Tamal K. Dey,et al.  Transforming Curves on Surfaces , 1999, J. Comput. Syst. Sci..

[29]  Erin W. Chambers,et al.  Multiple source shortest paths in a genus g graph , 2007, SODA '07.