Residual Least-Squares Error Estimate for Unstructured h-Adaptive Meshes

An a posteriori error estimate suitable for finite-volume adaptive computations is presented. The error estimate combines the least-squares method regressions with the residual computation, which provides information from the grid quality and the governing equations for a better local adaptation of the unstructured grid. The decision algorithm uses the information provided by the error estimate and does not require problem-dependent constants; it also uses a grid interface correction step to provide a smoother and a high-quality adaptive grid. The proposed error estimate and the adaptive refinement algorithm are verified against analytic solution for different two-dimensional problems. In addition, calculations of three-dimensional laminar flows with different types of unstructured grids have demonstrated the applicability of the adaptive method.

[1]  K. Bathe,et al.  Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .

[2]  Michel Visonneau,et al.  Adaptive finite-volume solution of complex turbulent flows , 2007 .

[3]  Michael J. Aftosmis,et al.  Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with Embedded Boundaries , 2002 .

[4]  N. Balakrishnan,et al.  A h-Adaptive Algorithm Using Residual Error Estimates for Fluid Flows , 2013 .

[5]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[6]  D. Darmofal,et al.  Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .

[7]  J. Ferziger,et al.  An adaptive multigrid technique for the incompressible Navier-Stokes equations , 1989 .

[8]  A. D. Gosman,et al.  Automatic resolution control for the finite-volume method. Part 3: Turbulent flow applications , 2000 .

[9]  Thomas Grätsch,et al.  Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .

[10]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[11]  Shepherds Bush RoadLondon Automatic Resolution Control for the Finite Volume Method. Part 1: A-posteriori Error Estimates , 2000 .

[12]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[13]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[14]  José M. C. Pereira,et al.  Adaptive mesh finite-volume calculation of 2D lid-cavity corner vortices , 2013, J. Comput. Phys..

[15]  Daniel F. Martin,et al.  A Cell-Centered Adaptive Projection Method for the Incompressible Euler Equations , 2000 .

[16]  Serge Nicaise,et al.  A posteriori error estimations of some cell-centered finite volume methods , 2005, SIAM J. Numer. Anal..

[17]  Phillip Colella,et al.  A cell-centered adaptive projection method for the incompressible Navier-Stokes equations in three dimensions , 2007, J. Comput. Phys..

[18]  T. Richter,et al.  SOLUTIONS OF 3D NAVIER-STOKES BENCHMARK PROBLEMS WITH ADAPTIVE FINITE ELEMENTS , 2006 .

[19]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[20]  Karel Segeth A review of some a posteriori error estimates for adaptive finite element methods , 2010, Math. Comput. Simul..

[21]  H. Jasak, A. D. Gosman AUTOMATIC RESOLUTION CONTROL FOR THE FINITE-VOLUME METHOD, PART 2: ADAPTIVE MESH REFINEMENT AND COARSENING , 2000 .

[22]  Andrew J. Sinclair,et al.  On the generation of exact solutions for evaluating numerical schemes and estimating discretization error , 2009, J. Comput. Phys..

[23]  V. Gregory Weirs,et al.  Adaptive Mesh Refinement - Theory and Applications , 2008 .

[24]  D. Calhoun A Cartesian Grid Method for Solving the Two-Dimensional Streamfunction-Vorticity Equations in Irregular Regions , 2002 .

[25]  S. Muzaferija,et al.  Finite-Volume CFD Procedure and Adaptive Error Control Strategy for Grids of Arbitrary Topology , 1997 .

[26]  Daniel C. Haworth,et al.  A global approach to error estimation and physical diagnostics in multidimensional computational fluid dynamics , 1993 .

[27]  M. Fortin,et al.  Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .

[28]  J. Pereira,et al.  A Conservative Finite-Volume Second-Order-Accurate Projection Method on Hybrid Unstructured Grids , 1999 .

[29]  Alexander Kurganov,et al.  Local error analysis for approximate solutions of hyperbolic conservation laws , 2005, Adv. Comput. Math..

[30]  A. D. Gosman,et al.  Element residual error estimate for the finite volume method , 2003 .

[31]  A. D. Gosman,et al.  RESIDUAL ERROR ESTIMATE FOR THE FINITE-VOLUME METHOD , 2001 .

[32]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[33]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[34]  T. Shih,et al.  Effects of grid staggering on numerical schemes , 1989 .

[35]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[36]  Dimitri J. Mavriplis,et al.  Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes , 1997 .

[37]  Anthony T. Patera,et al.  A posteriori finite-element output bounds for the incompressible Navier-Stokes equations: application to a natural convection problem , 2001 .

[38]  Narayanaswamy Balakrishnan,et al.  R-parameter: A local truncation error based adaptive framework for finite volume compressible flow solvers , 2009 .

[39]  A. D. Gosman,et al.  Automatic Resolution Control for the Finite-Volume Method, Part 2: Adaptive Mesh Refinement and Coarsening , 2000 .

[40]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[41]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[42]  H. Jasak, A. D. Gosman AUTOMATIC RESOLUTION CONTROL FOR THE FINITE-VOLUME METHOD, PART 3: TURBULENT FLOW APPLICATIONS , 2000 .

[43]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[44]  Marcelo H. Kobayashi,et al.  A fourth-order-accurate finite volume compact method for the incompressible Navier-Stokes solutions , 2001 .

[45]  A. D. Gosman,et al.  AUTOMATIC RESOLUTION CONTROL FOR THE FINITE-VOLUME METHOD, PART 1: A-POSTERIORI ERROR ESTIMATES , 2000 .

[46]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[47]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[48]  R. Verfiirth A posteriori error estimation and adaptive mesh-refinement techniques , 2001 .