Residual Least-Squares Error Estimate for Unstructured h-Adaptive Meshes
暂无分享,去创建一个
[1] K. Bathe,et al. Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .
[2] Michel Visonneau,et al. Adaptive finite-volume solution of complex turbulent flows , 2007 .
[3] Michael J. Aftosmis,et al. Multilevel Error Estimation and Adaptive h-Refinement for Cartesian Meshes with Embedded Boundaries , 2002 .
[4] N. Balakrishnan,et al. A h-Adaptive Algorithm Using Residual Error Estimates for Fluid Flows , 2013 .
[5] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[6] D. Darmofal,et al. Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .
[7] J. Ferziger,et al. An adaptive multigrid technique for the incompressible Navier-Stokes equations , 1989 .
[8] A. D. Gosman,et al. Automatic resolution control for the finite-volume method. Part 3: Turbulent flow applications , 2000 .
[9] Thomas Grätsch,et al. Review: A posteriori error estimation techniques in practical finite element analysis , 2005 .
[10] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[11] Shepherds Bush RoadLondon. Automatic Resolution Control for the Finite Volume Method. Part 1: A-posteriori Error Estimates , 2000 .
[12] M. Berger,et al. Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .
[13] O. C. Zienkiewicz,et al. Adaptive remeshing for compressible flow computations , 1987 .
[14] José M. C. Pereira,et al. Adaptive mesh finite-volume calculation of 2D lid-cavity corner vortices , 2013, J. Comput. Phys..
[15] Daniel F. Martin,et al. A Cell-Centered Adaptive Projection Method for the Incompressible Euler Equations , 2000 .
[16] Serge Nicaise,et al. A posteriori error estimations of some cell-centered finite volume methods , 2005, SIAM J. Numer. Anal..
[17] Phillip Colella,et al. A cell-centered adaptive projection method for the incompressible Navier-Stokes equations in three dimensions , 2007, J. Comput. Phys..
[18] T. Richter,et al. SOLUTIONS OF 3D NAVIER-STOKES BENCHMARK PROBLEMS WITH ADAPTIVE FINITE ELEMENTS , 2006 .
[19] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[20] Karel Segeth. A review of some a posteriori error estimates for adaptive finite element methods , 2010, Math. Comput. Simul..
[21] H. Jasak, A. D. Gosman. AUTOMATIC RESOLUTION CONTROL FOR THE FINITE-VOLUME METHOD, PART 2: ADAPTIVE MESH REFINEMENT AND COARSENING , 2000 .
[22] Andrew J. Sinclair,et al. On the generation of exact solutions for evaluating numerical schemes and estimating discretization error , 2009, J. Comput. Phys..
[23] V. Gregory Weirs,et al. Adaptive Mesh Refinement - Theory and Applications , 2008 .
[24] D. Calhoun. A Cartesian Grid Method for Solving the Two-Dimensional Streamfunction-Vorticity Equations in Irregular Regions , 2002 .
[25] S. Muzaferija,et al. Finite-Volume CFD Procedure and Adaptive Error Control Strategy for Grids of Arbitrary Topology , 1997 .
[26] Daniel C. Haworth,et al. A global approach to error estimation and physical diagnostics in multidimensional computational fluid dynamics , 1993 .
[27] M. Fortin,et al. Anisotropic mesh adaptation: towards user‐independent, mesh‐independent and solver‐independent CFD. Part I: general principles , 2000 .
[28] J. Pereira,et al. A Conservative Finite-Volume Second-Order-Accurate Projection Method on Hybrid Unstructured Grids , 1999 .
[29] Alexander Kurganov,et al. Local error analysis for approximate solutions of hyperbolic conservation laws , 2005, Adv. Comput. Math..
[30] A. D. Gosman,et al. Element residual error estimate for the finite volume method , 2003 .
[31] A. D. Gosman,et al. RESIDUAL ERROR ESTIMATE FOR THE FINITE-VOLUME METHOD , 2001 .
[32] C. Rhie,et al. Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .
[33] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[34] T. Shih,et al. Effects of grid staggering on numerical schemes , 1989 .
[35] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[36] Dimitri J. Mavriplis,et al. Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes , 1997 .
[37] Anthony T. Patera,et al. A posteriori finite-element output bounds for the incompressible Navier-Stokes equations: application to a natural convection problem , 2001 .
[38] Narayanaswamy Balakrishnan,et al. R-parameter: A local truncation error based adaptive framework for finite volume compressible flow solvers , 2009 .
[39] A. D. Gosman,et al. Automatic Resolution Control for the Finite-Volume Method, Part 2: Adaptive Mesh Refinement and Coarsening , 2000 .
[40] D. Spalding,et al. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .
[41] I. Babuska,et al. A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .
[42] H. Jasak, A. D. Gosman. AUTOMATIC RESOLUTION CONTROL FOR THE FINITE-VOLUME METHOD, PART 3: TURBULENT FLOW APPLICATIONS , 2000 .
[43] R. Rannacher,et al. Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .
[44] Marcelo H. Kobayashi,et al. A fourth-order-accurate finite volume compact method for the incompressible Navier-Stokes solutions , 2001 .
[45] A. D. Gosman,et al. AUTOMATIC RESOLUTION CONTROL FOR THE FINITE-VOLUME METHOD, PART 1: A-POSTERIORI ERROR ESTIMATES , 2000 .
[46] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[47] D. Venditti,et al. Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .
[48] R. Verfiirth. A posteriori error estimation and adaptive mesh-refinement techniques , 2001 .