Conservative unsteady aerodynamic simulation of arbitrary boundary motion using structured and unstructured meshes in time

SUMMARY Simulation of unsteady fluid behaviour with arbitrary boundary motion or topological change remains restricted owing to mesh deformation limitations, and usually requires the application of special techniques using overlapping meshes, sliding planes, remeshing or immersed boundaries. This work presents the application of a spacetime interpretation of the fluid conservation laws that unifies meshes in space and time. This effectively replaces the problem of mesh deformation with the problem of mesh generation and, because connectivity is no longer restricted to being constant in time, any motion or topological change may be simulated. Examples are given applying the method to a piston, a pitching NACA0012 aerofoil, an appearing/disappearing object, a two-dimensional store separation and a rotation case to validate and then demonstrate the capabilities of the method. Results for the pitching aerofoil case are compared with a conventional moving mesh unsteady computation and shown to be consistent, whereas the demonstration cases show qualitatively correct behaviour and illustrate the general nature of the technique. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  P. J. Zwart,et al.  Regular Article: The Integrated Space-Time Finite Volume Method and Its Application to Moving Boundary Problems , 1999 .

[2]  Tayfun E. Tezduyar Comments on 'Simplex space-time meshes in finite element simulations' , 2009 .

[3]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[4]  Juan J. Alonso,et al.  Fully-implicit time-marching aeroelastic solutions , 1994 .

[5]  Alla Sheffer,et al.  Tent-Pitcher: A Meshing Algorithm for Space-Time Discontinuous Galerkin Methods , 2000, IMR.

[6]  Ning Qin,et al.  Fast dynamic grid deformation based on Delaunay graph mapping , 2006 .

[7]  Rainald Löhner,et al.  Three-dimensional fluid-structure interaction using a finite element solver and adaptive remeshing , 1990 .

[8]  Charbel Farhat,et al.  Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications , 2003 .

[9]  Christian B Allen,et al.  Development and Validation of Sliding and Non-Matching Grid Technology for Control Surface Representation , 2006 .

[10]  Tayfun E. Tezduyar Finite Element Interface-Tracking and Interface-Capturing Techniques for Flows With Moving Boundaries and Interfaces , 2001, Heat Transfer: Volume 3 — Fluid-Physics and Heat Transfer for Macro- and Micro-Scale Gas-Liquid and Phase-Change Flows.

[11]  Michael B. Giles,et al.  Stator/rotor interaction in a transonic turbine , 1988 .

[12]  Vladimir V. Golubev,et al.  Space-Time Mapping Analysis of Airfoil Nonlinear Interaction With Unsteady Inviscid Flow , 2005 .

[13]  Scott M. Murman,et al.  Simulations of store separation from an F/A-18 with a Cartesian method , 2004 .

[14]  Christian B Allen,et al.  Parallel efficient mesh motion using radial basis functions with application to multi‐bladed rotors , 2008 .

[15]  Yuan Zhou,et al.  Spacetime meshing with adaptive refinement and coarsening , 2004, SCG '04.

[16]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[17]  Tayfun E. Tezduyar,et al.  Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces , 2006 .

[18]  Sin-Chung Chang,et al.  The method of space-time conservation element and solution element-applications to one-dimensional and two-dimensional time-marching flow problems , 1995 .

[19]  Jaime Peraire,et al.  An adaptive finite element method for transient compressible flows with moving boundaries , 1991 .

[20]  Yair Mor-Yossef,et al.  Robust Cartesian Grid Flow Solver for High-Reynolds-Number Turbulent Flow Simulations , 2010 .

[21]  Luca Formaggia,et al.  Simulation of a store separation using the finite element method , 1988 .

[22]  C. Allen,et al.  Unified fluid–structure interpolation and mesh motion using radial basis functions , 2008 .

[23]  Rainald Löhner,et al.  Improved ALE mesh velocities for moving bodies , 1996 .

[24]  Christopher L. Rumsey,et al.  Computation of acoustic waves through sliding-zone interfaces using an Euler/Navier-Stokes code , 1996 .

[25]  Local Space-Time Adaptive Discontinuous Galerkin Finite Element Methods for Time-Dependent Waves , 2003 .

[26]  C. Farhat,et al.  Torsional springs for two-dimensional dynamic unstructured fluid meshes , 1998 .

[27]  A. Jameson Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings , 1991 .

[28]  Marek Behr,et al.  Simplex space–time meshes in finite element simulations , 2008 .

[29]  M. D. Salas,et al.  Digital Flight: The Last CFD Aeronautical Grand Challenge , 2006, J. Sci. Comput..

[30]  Tayfun E. Tezduyar,et al.  Enhanced-discretization space time technique (EDSTT) , 2004 .

[31]  Ray Hixon,et al.  Space-Time Mapping Analysis for the Accurate Calculation of Complex Unsteady Flows* , 2003 .

[32]  Michael Dumbser,et al.  Building Blocks for Arbitrary High Order Discontinuous Galerkin Schemes , 2006, J. Sci. Comput..

[33]  Michael Dumbser,et al.  Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.

[34]  Sin-Chung Chang The Method of Space-Time Conservation Element and Solution Element-A New Approach for Solving the Navier-Stokes and Euler Equations , 1995 .

[35]  Ken Badcock,et al.  A common European Euler code for the analysis of the helicopter rotor flowfield , 2000 .

[36]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[37]  Christian B Allen,et al.  Towards automatic structured multiblock mesh generation using improved transfinite interpolation , 2008 .

[38]  J. Batina UNSTEADY EULER ALGORITHM WITH UNSTRUCTURED DYNAMIC MESH FOR COMPLEX – AIRCRAFT AERODYNAMIC ANALYSIS , 1991 .

[39]  Hester Bijl,et al.  Higher-order time integration through smooth mesh deformation for 3D fluid-structure interaction simulations , 2007, J. Comput. Phys..

[40]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[41]  G. Barakos,et al.  Sliding mesh algorithm for CFD analysis of helicopter rotor–fuselage aerodynamics , 2008 .

[42]  Sin-Chung Chang,et al.  New Developments in the Method of Space-Time Conservation Element and Solution Element-Applications to Two-Dimensional Time-Marching Problems , 1994 .

[43]  S. Ray,et al.  A model of the interaction of a fluid with multiple deformable bodies , 1998 .

[44]  Scott M. Murman,et al.  Implicit approaches for moving boundaries in a 3-D Cartesian method , 2003 .

[45]  Michael B. Giles,et al.  Nonreflecting boundary conditions for Euler equation calculations , 1990 .

[46]  Isaac Fried,et al.  Finite-element analysis of time-dependent phenomena. , 1969 .

[47]  H. van der Ven,et al.  An adaptive multitime multigrid algorithm for time-periodic flow simulations , 2008, J. Comput. Phys..

[48]  Biing-Horng Liou,et al.  Direct calculation of turbomachinery flows using the space-time conservation element and solution element method , 2001 .