MOLCAS 7: The Next Generation

Some of the new unique features of the MOLCAS quantum chemistry package version 7 are presented in this report. In particular, the Cholesky decomposition method applied to some quantum chemical methods is described. This approach is used both in the context of a straight forward approximation of the two‐electron integrals and in the generation of so‐called auxiliary basis sets. The article describes how the method is implemented for most known wave functions models: self‐consistent field, density functional theory, 2nd order perturbation theory, complete‐active space self‐consistent field multiconfigurational reference 2nd order perturbation theory, and coupled‐cluster methods. The report further elaborates on the implementation of a restricted‐active space self‐consistent field reference function in conjunction with 2nd order perturbation theory. The average atomic natural orbital basis for relativistic calculations, covering the whole periodic table, are described and associated unique properties are demonstrated. Furthermore, the use of the arbitrary order Douglas‐Kroll‐Hess transformation for one‐component relativistic calculations and its implementation are discussed. This section especially focuses on the implementation of the so‐called picture‐change‐free atomic orbital property integrals. Moreover, the ElectroStatic Potential Fitted scheme, a version of a quantum mechanics/molecular mechanics hybrid method implemented in MOLCAS, is described and discussed. Finally, the report discusses the use of the MOLCAS package for advanced studies of photo chemical phenomena and the usefulness of the algorithms for constrained geometry optimization in MOLCAS in association with such studies. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010

[1]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[2]  L. Gagliardi,et al.  Quantum chemical calculations predict the diphenyl diuranium compound [PhUUPh] to have a stable 1Ag ground state. , 2006, Angewandte Chemie.

[3]  B. Roos,et al.  A new method for large-scale Cl calculations , 1972 .

[4]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. , 2004, The Journal of chemical physics.

[5]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[6]  L. Serrano-Andrés,et al.  Theoretical insight into the spectroscopy and photochemistry of isoalloxazine, the flavin core ring. , 2006, The journal of physical chemistry. A.

[7]  Roland Lindh,et al.  Force-constant weighted redundant coordinates in molecular geometry optimizations , 1999 .

[8]  M. Urban,et al.  Electron affinity of the O2 molecule: CCSD(T) calculations using the optimized virtual orbitals space approach† , 2008 .

[9]  W. C. Lineberger,et al.  The Only Stable State of O2- Is the X 2Πg Ground State and It (Still!) Has an Adiabatic Electron Detachment Energy of 0.45 eV , 2003 .

[10]  Stephen D. Wilson,et al.  Frontiers in Quantum Systems in Chemistry and Physics , 2008 .

[11]  Rodney J. Bartlett,et al.  Coupled-cluster methods with internal and semi-internal triply and quadruply excited clusters: CCSDt and CCSDtq approaches , 1999 .

[12]  V. Kellö,et al.  Picture change and calculations of expectation values in approximate relativistic theories , 1998 .

[13]  B. Roos,et al.  The ozone ring closure as a test for multi-state multi-configurational second order perturbation theory (MS-CASPT2) , 2008 .

[14]  R. Lindh,et al.  Location of Two Seams in the Proximity of the C2v ππ* Minimum Energy Path of Formaldehyde. , 2009, Journal of chemical theory and computation.

[15]  L. Serrano-Andrés,et al.  A three-state model for the photophysics of adenine. , 2006, Chemistry.

[16]  Roland Lindh,et al.  Main group atoms and dimers studied with a new relativistic ANO basis set , 2004 .

[17]  Manuela Merchán,et al.  Quantum chemistry of the excited state: 2005 overview , 2005 .

[18]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[19]  Roland Lindh,et al.  New relativistic ANO basis sets for transition metal atoms. , 2005, The journal of physical chemistry. A.

[20]  Stuart A. Rice,et al.  New methods in computational quantum mechanics , 1996 .

[21]  B. Roos,et al.  Theoretical study of the electronic spectrum of all-trans-1,3,5,7-octatetraene , 1993 .

[22]  M. Urban,et al.  Toward more efficient CCSD(T) calculations of intermolecular interactions in model hydrogen-bonded and stacked dimers. , 2008, The journal of physical chemistry. A.

[23]  N. Ferré,et al.  The color of rhodopsins at the ab initio multiconfigurational perturbation theory resolution , 2006, Proceedings of the National Academy of Sciences.

[24]  Roland Lindh,et al.  Analytical gradients of a state average MCSCF state and a state average diagnostic , 2001 .

[25]  M. Urban,et al.  Benchmark calculations of some molecular properties of O2, CN and other selected small radicals using the ROHF-CCSD(T) method , 2002 .

[26]  Pekka Pyykkö,et al.  Relativistic Quantum Chemistry , 1978 .

[27]  L. Seijo,et al.  The ab initio model potential representation of the crystalline environment. Theoretical study of the local distortion on NaCl:Cu+ , 1988 .

[28]  N. Ferré,et al.  Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry , 2007, Proceedings of the National Academy of Sciences.

[29]  M. Urban,et al.  Optimized virtual orbitals for relativistic calculations: an alternative approach to the basis set construction for correlation calculations , 2006 .

[30]  Per-Olof Widmark,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1990 .

[31]  Josef Paldus,et al.  Time-dependent coupled cluster approach: Excitation energy calculation using an orthogonally spin-adapted formalism , 1986 .

[32]  K. Müller,et al.  Location of saddle points and minimum energy paths by a constrained simplex optimization procedure , 1979 .

[33]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[34]  R J Bartlett,et al.  Parallel implementation of electronic structure energy, gradient, and Hessian calculations. , 2008, The Journal of chemical physics.

[35]  Francesco Aquilante,et al.  Fast noniterative orbital localization for large molecules. , 2006, The Journal of chemical physics.

[36]  B. Roos,et al.  On the Effects of Spin–Orbit Coupling on Molecular Properties: Dipole Moment and Polarizability of PbO and Spectroscopic Constants for the Ground and Excited States , 2004 .

[37]  Markus Reiher,et al.  The generalized Douglas–Kroll transformation , 2002 .

[38]  Igor Schapiro,et al.  Photochemistry of visual pigment chromophore models by ab initio molecular dynamics. , 2007, The journal of physical chemistry. B.

[39]  Roland Lindh,et al.  New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3. , 2008, The journal of physical chemistry. A.

[40]  B. Roos,et al.  The electronic spectrum of the UO2 molecule. , 2005, Journal of the American Chemical Society.

[41]  L. Serrano-Andrés,et al.  Theoretical Study of the Twisted Intramolecular Charge Transfer in 1-Phenylpyrrole , 2000 .

[42]  Markus P. Fülscher,et al.  Solvent Effects on Electronic Spectra Studied by Multiconfigurational Perturbation Theory , 1997 .

[43]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[44]  Markus Reiher,et al.  Regular no-pair Dirac operators: Numerical study of the convergence of high-order Douglas–Kroll–Hess transformations , 2007 .

[45]  K. Pierloot,et al.  The CASPT2 method in inorganic electronic spectroscopy: from ionic transition metal to covalent actinide complexes* , 2003 .

[46]  L. Serrano-Andrés,et al.  Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Henrik Koch,et al.  Size-intensive decomposition of orbital energy denominators , 2000 .

[48]  Peter Schwerdtfeger,et al.  Relativistic atomic orbital contractions and expansions: magnitudes and explanations , 1990 .

[49]  Roland Lindh,et al.  The reduced multiplication scheme of the Rys-Gauss quadrature for 1st order integral derivatives , 1993 .

[50]  Luis Serrano-Andrés,et al.  The multi-state CASPT2 method , 1998 .

[51]  L. Serrano-Andrés,et al.  Ab initio determination of the electron affinities of DNA and RNA nucleobases. , 2008, The Journal of chemical physics.

[52]  M. Gutowski,et al.  Coupled-cluster and explicitly correlated perturbation-theory calculations of the uracil anion. , 2007, The Journal of chemical physics.

[53]  J. Noga,et al.  Coupled cluster theory that takes care of the correlation cusp by inclusion of linear terms in the interelectronic coordinates , 1994 .

[54]  Thomas Bondo Pedersen,et al.  Polarizability and optical rotation calculated from the approximate coupled cluster singles and doubles CC2 linear response theory using Cholesky decompositions. , 2004, The Journal of chemical physics.

[55]  Mark S. Gordon,et al.  A Novel Approach to Parallel Coupled Cluster Calculations: Combining Distributed and Shared Memory Techniques for Modern Cluster Based Systems , 2007 .

[56]  Hans-Joachim Werner,et al.  Multireference perturbation theory for large restricted and selected active space reference wave functions , 2000 .

[57]  Alistair P. Rendell,et al.  The restricted active space self-consistent-field method, implemented with a split graph unitary group approach , 1990 .

[58]  P. Neogrády,et al.  Optimized virtual orbitals for correlated calculations: an alternative approach , 2005 .

[59]  Walter Thiel,et al.  Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. , 2008, The Journal of chemical physics.

[60]  R. Bartlett,et al.  Towards a full CCSDT model for electron correlation. CCSDT-n models , 1987 .

[61]  K. Fægri Relativistic Gaussian basis sets for the elements K – Uuo , 2001 .

[62]  W. C. Martin,et al.  Handbook of Basic Atomic Spectroscopic Data (version 1.0) , 2003 .

[63]  Yajun Liu,et al.  Chemiluminescence of 1,2-dioxetane. Reaction mechanism uncovered. , 2007, The journal of physical chemistry. A.

[64]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[65]  Roland Lindh,et al.  Analytic high-order Douglas-Kroll-Hess electric field gradients. , 2007, The Journal of chemical physics.

[66]  R. Lindh,et al.  Nuclear quadrupole moment of 119Sn. , 2008, The journal of physical chemistry. A.

[67]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[68]  L. Serrano-Andrés,et al.  A three-state model for the photophysics of guanine. , 2008, Journal of the American Chemical Society.

[69]  Roland Lindh,et al.  New General Tools for Constrained Geometry Optimizations. , 2005, Journal of chemical theory and computation.

[70]  H. Werner,et al.  The effect of local approximations in coupled-cluster wave functions on dipole moments and static dipole polarisabilitiesDedicated to Prof. W. Meyer on the occasion of his 65th birthday. , 2004 .

[71]  M. Urban,et al.  Benzene Dimer: High-Level Wave Function and Density Functional Theory Calculations. , 2008, Journal of chemical theory and computation.

[72]  R. Bartlett,et al.  Can simple localized bond orbitals and coupled cluster methods predict reliable molecular energies , 1985 .

[73]  Markus Reiher,et al.  Douglas–Kroll–Hess Theory: a relativistic electrons-only theory for chemistry , 2006 .

[74]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[75]  Thomas Bondo Pedersen,et al.  Reduced scaling in electronic structure calculations using Cholesky decompositions , 2003 .

[76]  Roland Lindh,et al.  2MOLCAS as a development platform for quantum chemistry software , 2004 .

[77]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[78]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. I. General theory. , 2004, The Journal of chemical physics.

[79]  Per E. M. Siegbahn,et al.  Polarization functions for first and second row atoms in Gaussian type MO-SCF calculations , 1970 .

[80]  J. J. Serrano-Pérez,et al.  On the intrinsic population of the lowest triplet state of thymine. , 2007, The journal of physical chemistry. B.

[81]  L. Serrano-Andrés,et al.  Theoretical CASPT2 study of the excited state double proton transfer reaction in the 7-azaindole dimer , 2006 .

[82]  John F. Stanton,et al.  Computational Chemistry: Reviews of Current Trends. Volume 5 Edited by Jerzy Leszczynski (Jackson State University). World Scientific: Singapore, New Jersey, London, Hong Kong. 2000. x + 326 pp. $68.00. 981-02-4371-5. , 2001 .

[83]  Björn O. Roos,et al.  The CASSCF state interaction method , 1989 .

[84]  B. Roos,et al.  Mapping the d-d excited-state manifolds of transition metal beta-diiminato-imido complexes. Comparison of density functional theory and CASPT2 energetics. , 2008, Journal of Physical Chemistry A.

[85]  L. Serrano-Andrés,et al.  Unified model for the ultrafast decay of pyrimidine nucleobases. , 2006, The journal of physical chemistry. B.

[86]  G. Karlstroem A new approach to the modeling of dielectric media effects in ab initio quantum chemical calculations , 1988 .

[87]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[88]  R. Carbó Current aspects of quantum chemistry, 1981 : proceedings of an international conference and workshop, Barcelona, Spain, 28 September-3 October 1981 , 1982 .

[89]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[90]  Roland Lindh,et al.  The Douglas-Kroll-Hess electron density at an atomic nucleus , 2008 .

[91]  Francesco Aquilante,et al.  Cholesky Decomposition-Based Multiconfiguration Second-Order Perturbation Theory (CD-CASPT2): Application to the Spin-State Energetics of Co(III)(diiminato)(NPh). , 2008, Journal of chemical theory and computation.

[92]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[93]  N. H. Beebe,et al.  Simplifications in the generation and transformation of two‐electron integrals in molecular calculations , 1977 .

[94]  H. Koch,et al.  Coupled cluster response theory in parameter subspaces , 2009 .

[95]  Roland Lindh,et al.  Atomic Cholesky decompositions: a route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency. , 2009, The Journal of chemical physics.

[96]  M. Reiher,et al.  Density matrix renormalization group calculations on relative energies of transition metal complexes and clusters. , 2008, The Journal of chemical physics.

[97]  B. Roos,et al.  Quantum chemistry predicts multiply bonded diuranium compounds to be stable. , 2006, Inorganic chemistry.

[98]  Peter Pulay,et al.  Parallel Calculation of Coupled Cluster Singles and Doubles Wave Functions Using Array Files. , 2007, Journal of chemical theory and computation.

[99]  Josep Maria Bofill,et al.  A reduced‐restricted‐quasi‐Newton–Raphson method for locating and optimizing energy crossing points between two potential energy surfaces , 1997 .

[100]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[101]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[102]  S. J. Cole,et al.  Towards a full CCSDT model for electron correlation , 1985 .

[103]  Josef Paldus,et al.  Reduced multireference CCSD method: An effective approach to quasidegenerate states , 1997 .

[104]  Bernd Schimmelpfennig,et al.  The restricted active space (RAS) state interaction approach with spin-orbit coupling , 2002 .

[105]  R. Cimiraglia,et al.  New perspectives in multireference perturbation theory: the n-electron valence state approach , 2007 .

[106]  Laura Gagliardi,et al.  Multiconfigurational quantum chemical methods for molecular systems containing actinides. , 2007, Chemical Society reviews.

[107]  Josef Paldus,et al.  Automation of the implementation of spin‐adapted open‐shell coupled‐cluster theories relying on the unitary group formalism , 1994 .

[108]  Josef Paldus,et al.  A Critical Assessment of Coupled Cluster Method in Quantum Chemistry , 2007 .

[109]  Stephen R. Langhoff,et al.  Quantum mechanical electronic structure calculations with chemical accuracy , 1995 .

[110]  M. Urban,et al.  Spin-Adapted restricted Hartree–Fock reference coupled-cluster theory for open-shell systems: Noniterative triples for noncanonical orbitals , 1995 .

[111]  L. Serrano-Andrés,et al.  On the intrinsic population of the lowest triplet state of uracil , 2007 .

[112]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[113]  Roland Lindh,et al.  Unbiased auxiliary basis sets for accurate two-electron integral approximations. , 2007, The Journal of chemical physics.

[114]  L. Serrano-Andrés,et al.  Rydberg or valence? The long-standing question in the UV absorption spectrum of 1,1'-bicyclohexylidene. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[115]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[116]  Rodney J. Bartlett,et al.  Formulation and implementation of the full coupled-cluster method through pentuple excitations , 2002 .

[117]  Roland Lindh,et al.  ON THE USE OF A HESSIAN MODEL FUNCTION IN MOLECULAR GEOMETRY OPTIMIZATIONS , 1995 .

[118]  R. Lindh,et al.  Low-cost evaluation of the exchange Fock matrix from Cholesky and density fitting representations of the electron repulsion integrals. , 2007, The Journal of chemical physics.

[119]  Jerzy Leszczynski,et al.  COMPUTATIONAL CHEMISTRY: Reviews of Current Trends , 2006 .

[120]  J. Gauss,et al.  Towards a spin-adapted coupled-cluster theory for high-spin open-shell states. , 2006, The Journal of chemical physics.

[121]  B. Roos,et al.  An ab initio study of the electron affinity of O2 , 1993 .

[122]  Laura Gagliardi,et al.  The restricted active space followed by second-order perturbation theory method: theory and application to the study of CuO2 and Cu2O2 systems. , 2008, The Journal of chemical physics.

[123]  Manuela Merchán,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1995 .

[124]  B. Roos,et al.  The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule , 1981 .

[125]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[126]  B. Roos,et al.  New relativistic ANO basis sets for actinide atoms , 2005 .

[127]  Giovanni Scalmani,et al.  Polarizable dielectric model of solvation with inclusion of charge penetration effects , 2001 .

[128]  M. Urban,et al.  Coupled-cluster study of spectroscopic constants of the alkali metal diatomics: ground and the singlet excited states of Na-2, NaLi, NaK and NaRb , 2005 .

[129]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[130]  Trygve Helgaker,et al.  The integral‐direct coupled cluster singles and doubles model , 1996 .

[131]  S. Chattopadhyay,et al.  A state-specific approach to multireference coupled electron-pair approximation like methods: development and applications. , 2004, The Journal of chemical physics.

[132]  B. Roos,et al.  Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond , 2005, Nature.

[133]  Mihály Kállay,et al.  Higher excitations in coupled-cluster theory , 2001 .

[134]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .

[135]  B. Roos,et al.  A very short uranium-uranium bond: the predicted metastable U(2)2+. , 2005, Physical chemistry chemical physics : PCCP.

[136]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[137]  M. Reiher,et al.  Electromagnetic fields in relativistic one-particle equations , 2009 .

[138]  E. Brändas,et al.  Fundamental World of Quantum Chemistry , 2003 .

[139]  Yajun Liu,et al.  Spin-orbit ab initio investigation of the ultraviolet photolysis of diiodomethane. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[140]  A. Veillard,et al.  Gaussian basis sets for molecular wavefunctions containing third-row atoms , 1971 .

[141]  Pierre Valiron,et al.  Improved algorithm for triple-excitation contributions within the coupled cluster approach , 2005 .

[142]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[143]  János G. Ángyán,et al.  Approximate electrostatic interaction operator for QM/MM calculations , 2002 .

[144]  P. Siegbahn,et al.  Gaussian basis sets for the first and second row atoms , 1970 .

[145]  L. Serrano-Andrés,et al.  Theoretical study of the low‐lying states of trans‐1,3‐butadiene , 1992 .

[146]  J. Connolly,et al.  On first‐row diatomic molecules and local density models , 1979 .

[147]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[148]  Roland Lindh,et al.  Towards an accurate molecular orbital theory for excited states: Ethene, butadiene, and hexatriene , 1993 .

[149]  Massimo Olivucci,et al.  Relationship between the excited state relaxation paths of rhodopsin and isorhodopsin. , 2008, Journal of the American Chemical Society.

[150]  N. Forsberg,et al.  Vibronic structure in triatomic molecules: The hydrocarbon flame bands of the formyl radical (HCO). A theoretical study , 1998 .

[151]  Tomasz Janowski,et al.  Efficient Parallel Implementation of the CCSD External Exchange Operator and the Perturbative Triples (T) Energy Calculation. , 2008, Journal of chemical theory and computation.

[152]  G. Scuseria,et al.  Scaling reduction of the perturbative triples correction (T) to coupled cluster theory via Laplace transform formalism , 2000 .

[153]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[154]  Jürgen Gauss,et al.  Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients , 1993 .

[155]  Theodore Simos,et al.  Trends and Perspectives in Modern Computational Science , 2006 .

[156]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[157]  L. Serrano-Andrés,et al.  Triplet-state formation along the ultrafast decay of excited singlet cytosine. , 2005, Journal of the American Chemical Society.

[158]  N. Forsberg,et al.  A Theoretical Determination of the Low-lying Electronic States of the p-Benzosemiquinone Radical Anion , 2000 .

[159]  D. Truhlar,et al.  QM/MM: what have we learned, where are we, and where do we go from here? , 2007 .

[160]  Pavel Hobza,et al.  Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[161]  B. Roos,et al.  A theoretical study of the 1B2u and 1B1u vibronic bands in benzene , 2000 .

[162]  Francesco Aquilante,et al.  Quartic scaling evaluation of canonical scaled opposite spin second-order Møller Plesset correlation energy using Cholesky decompositions , 2007 .

[163]  R. Bartlett,et al.  A direct product decomposition approach for symmetry exploitation in many-body methods. I. Energy calculations , 1991 .

[164]  Andrew G. Taube,et al.  Frozen Natural Orbitals: Systematic Basis Set Truncation for Coupled-Cluster Theory , 2005 .

[165]  Massimo Olivucci,et al.  I - Computational Photochemistry , 2005 .

[166]  K. Pierloot,et al.  Binding of CO, NO, and O2 to heme by density functional and multireference ab initio calculations. , 2008, The journal of physical chemistry. A.

[167]  A. Dutoi,et al.  Accurate local approximations to the triples correlation energy: formulation, implementation and tests of 5th-order scaling models , 2005 .

[168]  W. C. Martin,et al.  Handbook of Basic Atomic Spectroscopic Data , 2005 .

[169]  P. Knowles,et al.  The CIPT2 method: Coupling of multi-reference configuration interaction and multi-reference perturbation theory. Application to the chromium dimer , 2004 .

[170]  R. Lindh,et al.  An efficient method of implementing the horizontal recurrence relation in the evaluation of electron repulsion integrals using Cartesian Gaussian functios , 1991 .

[171]  Stephen Wilson,et al.  Methods in Computational Chemistry , 1987 .

[172]  L. Serrano-Andrés,et al.  DNA nucleobase properties and photoreactivity: Modeling environmental effects , 2009 .

[173]  Per-Olof Widmark,et al.  Density matrix averaged atomic natural orbital (ANO) basis sets for correlated molecular wave functions , 1995 .

[174]  K. Pierloot,et al.  Relative energy of the high-(5T2g) and low-(1A1g) spin states of the ferrous complexes [Fe(L)(NHS4)]: CASPT2 versus density functional theory. , 2008, The Journal of chemical physics.

[175]  J. Pittner,et al.  State-specific Brillouin–Wigner multireference coupled cluster study of the F2 molecule: assessment of the a posteriori size-extensivity correction , 2001 .

[176]  B. Roos,et al.  Theoretical characterization of the lowest-energy absorption band of pyrrole , 2002 .

[177]  G. Scuseria,et al.  The Laplace Transform Perturbative Triples Correction Ansatz , 2003 .

[178]  R. Bartlett,et al.  Optimized virtual orbital space for high‐level correlated calculations. II. Electric properties , 1988 .

[179]  R. Bartlett,et al.  Optimized virtual orbital space for high‐level correlated calculations , 1987 .

[180]  Roland Lindh,et al.  A direct implementation of the second-order derivatives of multiconfigurational SCF energies and an analysis of the preconditioning in the associated response equation , 1999 .

[181]  Roland Lindh,et al.  The reduced multiplication scheme of the Rys quadrature and new recurrence relations for auxiliary function based two‐electron integral evaluation , 1991 .

[182]  Thom Vreven,et al.  Geometry optimization with QM/MM, ONIOM, and other combined methods. I. Microiterations and constraints , 2003, J. Comput. Chem..

[183]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[184]  B. Roos,et al.  Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers , 2004 .