Dark matter distribution in dwarf spheroidal galaxies

We study the distribution of dark matter in dwarf spheroidal galaxies by modelling the moments of their line-of-sight velocity distributions. We discuss different dark matter density profiles, both cuspy and possessing flat density cores. The predictions are made in the framework of standard dynamical theory of two-component (stars and dark matter) spherical systems with different velocity distributions. We compare the predicted velocity dispersion profiles to observations in the case of Fornax and Draco dwarfs. For isotropic models the dark haloes with cores are found to fit the data better than those with cusps. Anisotropic models are studied by fitting two parameters, dark mass and velocity anisotropy, to the data. In this case all profiles yield good fits, but the steeper the cusp of the profile, the more tangential is the velocity distribution required to fit the data. To resolve this well-known degeneracy of density profile versus velocity anisotropy, we obtain predictions for the kurtosis of the line-of-sight velocity distribution for models found to provide best fits to the velocity dispersion profiles. It turns out that profiles with cores typically yield higher values of kurtosis which decrease more steeply with distance than the cuspy profiles, which will allow us to discriminate between the profiles once the kurtosis measurements become available. We also show that with present quality of the data the alternative explanation of velocity dispersions in terms of Modified Newtonian Dynamics cannot yet be ruled out.

[1]  On the Shape of the Light Profiles of Early Type Galaxies - Part Two - the - Diagram , 1993, astro-ph/9309013.

[2]  R. Swaters,et al.  Dwarf galaxy rotation curves and the core problem of dark matter haloes , 2000, astro-ph/0006048.

[3]  M. Milgrom A modification of the newtonian dynamics as a possible alternative to the hidden mass hypothesis , 1983 .

[4]  On the Formation and Evolution of Disk Galaxies: Cosmological Initial Conditions and the Gravitational Collapse , 1997, astro-ph/9710201.

[5]  D. Merritt,et al.  Spherical stellar systems with spheroidal velocity distributions , 1985 .

[6]  N. W. Evans,et al.  Dark matter in dwarf spheroidals - I. Models , 2002 .

[7]  D. Merritt The Distribution of Dark Matter in the Coma Cluster , 1987 .

[8]  G. Lake Testing modifications of gravity , 1989 .

[9]  S. White,et al.  Models for Galaxy halos in an open universe , 1992 .

[10]  S. McGaugh,et al.  Testing the Hypothesis of Modified Dynamics with Low Surface Brightness Galaxies and Other Evidence , 1998, astro-ph/9801102.

[11]  Toshiyuki Fukushige,et al.  On the Origin of Cusps in Dark Matter Halos , 1996, astro-ph/9610005.

[12]  High-Resolution Rotation Curves of Low Surface Brightness Galaxies. II. Mass Models , 2001 .

[13]  Mike Irwin,et al.  Structural parameters for the Galactic dwarf spheroidals , 1995 .

[14]  R. Saglia,et al.  Dynamical Family Properties and Dark Halo Scaling Relations of Giant Elliptical Galaxies , 2000, astro-ph/0012381.

[15]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[16]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation , 1993 .

[17]  Slawomir Piatek,et al.  The effect of galactic tides on the apparent mass-to-light ratios in dwarf spheroidal galaxies , 1995 .

[18]  Nuclear Cusps and Cores in Early-Type Galaxies as Relics of Binary Black Hole Mergers , 2001, astro-ph/0110441.

[19]  E. Łokas Universal profile of dark matter haloes and the spherical infall model , 2000 .

[20]  V. Rubin,et al.  Mass Density Profiles of Low Surface Brightness Galaxies , 2001, astro-ph/0103102.

[21]  Density profiles in a spherical infall model with non-radial motions , 2001, astro-ph/0111324.

[22]  M. Verheijen,et al.  Rotation Curves of Ursa Major Galaxies in the Context of Modified Newtonian Dynamics , 1998, astro-ph/9802240.

[23]  Gary A. Mamon,et al.  Properties of spherical galaxies and clusters with an NFW density profile , 2000, astro-ph/0002395.

[24]  M. Bartelmann,et al.  The Core Structure of Galaxy Clusters from Gravitational Lensing , 1999, astro-ph/9905134.

[25]  S. Kent,et al.  Fourth moments and the dynamics of spherical systems , 1990 .

[26]  S. Tremaine,et al.  A general method for constructing spherical galaxy models , 1984 .

[27]  R. Carlberg,et al.  The Velocity and Mass Distribution of Clusters of Galaxies from the CNOC1 Cluster Redshift Survey , 1999, astro-ph/9910494.

[28]  A. Noriega-Crespo,et al.  The Closest Planetary Nebula, SH 2-216, and Its Interaction with the Interstellar Medium , 1995 .

[29]  M. Irwin,et al.  A dwarf satellite galaxy in Sagittarius , 1994, Nature.

[30]  J. Peacock,et al.  The structure of galaxy clusters in various cosmologies , 1998 .

[31]  Exploring Halo Substructure with Giant Stars. II. Mapping the Extended Structure of the Carina Dwarf Spheroidal Galaxy , 1999, astro-ph/9911191.

[32]  Y. Hoffman,et al.  Formation of Cuspy Density Profiles: A Generic Feature of Collisionless Gravitational Collapse , 2000, astro-ph/0005566.

[33]  To Appear in ApJ letters Preprint typeset using L ATEX style emulateapj v. 04/03/99 DARK MATTER SCALING RELATIONS , 2000 .

[34]  D. Spergel,et al.  Dwarf spheroidal galaxies and non-Newtonian gravity , 1992 .

[35]  OBSERVATIONAL AND THEORETICAL CONSTRAINTS ON SINGULAR DARK MATTER HALOS , 1994, astro-ph/9402004.

[36]  Isaac Shlosman,et al.  Dark Halos: The Flattening of the Density Cusp by Dynamical Friction , 2001, astro-ph/0103386.

[37]  Mario Mateo,et al.  DWARF GALAXIES OF THE LOCAL GROUP , 1998, astro-ph/9810070.

[38]  Herwig Dejonghe,et al.  A completely analytical family of anisotropic Plummer models , 1987 .

[39]  Testing the gravitational instability hypothesis , 1993, astro-ph/9311052.

[40]  G. Lake,et al.  Resolving the Structure of Cold Dark Matter Halos , 1997, astro-ph/9709051.

[41]  A. Broeils,et al.  Extended rotation curves of spiral galaxies: dark haloes and modified dynamics , 1991 .

[42]  Pavel Kroupa,et al.  Dwarf spheroidal satellite galaxies without dark matter , 1997 .

[43]  The Density Profiles of the Dark Matter Halo Are Not Universal. , 1999, The Astrophysical journal.

[44]  M. Mateo,et al.  A kinematic study of the Fornax dwarf spheroidal galaxy , 1991 .

[45]  The specific entropy of elliptical galaxies: an explanation for profile‐shape distance indicators? , 1999, astro-ph/9905048.

[46]  Nelson Caldwell,et al.  Surface Brightness Profiles of Three New Dwarf Spheroidal Companions to M31 , 1999, astro-ph/9905302.

[47]  A tidal extension in the ursa minor dwarf spheroidal galaxy , 2001, astro-ph/0101456.

[48]  E. Łokas Velocity dispersions of dwarf spheroidal galaxies: dark matter versus MOND , 2001 .

[49]  A. Borriello,et al.  The dark matter distribution in disc galaxies , 2000 .

[50]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[51]  E. Olszewski,et al.  The mass-to-light ratios of the draco and ursa minor dwarf spheroidal galaxies. I. Radial velocities from multifiber spectroscopy , 1995 .

[52]  B. Moore Evidence against dissipation-less dark matter from observations of galaxy haloes , 1994, Nature.

[53]  Mark I. Wilkinson,et al.  First Clear Signature of an Extended Dark Matter Halo in the Draco Dwarf Spheroidal , 2001 .

[54]  Gary A. Mamon,et al.  M/L and velocity anisotropy from observations of spherical galaxies, or must M87 have a massive black hole? , 1982 .

[55]  N. W. Evans,et al.  Dark matter in dwarf spheroidals – II. Observations and modelling of Draco , 2001, astro-ph/0109450.

[56]  Sverre J. Aarseth,et al.  On the Tidal Disruption of Dwarf Spheroidal Galaxies around the Galaxy , 1995 .

[57]  E. Olszewski,et al.  The Mass-to-Light Ratios of the Draco and Ursa Minor Dwarf Spheroidal Galaxies. II. The Binary Population and its Effects on the Measured Velocity Dispersions of Dwarf Spheroidals , 1996 .

[58]  P. R. Wilson,et al.  The Internal Solar Rotation Rate Inferred from Combined GONG and LOWL Data , 1998 .

[59]  G. Kochanski,et al.  Detailed Mass Map of CL 0024+1654 from Strong Lensing , 1998, astro-ph/9801193.