A geometric approach for quadrotor trajectory tracking control

This paper investigates the trajectory tracking problem for quadrotor with attitude finite-time convergence via geometric approach. First, a global geometric dynamic description is presented on the special Euclidean group (SE(3)), and the trajectory tracking control is decomposed into two cascaded tracking control loops: the position tracking control loop and the attitude tracking control loop. Then, based on the fact that the attitude tracking loop is a fast loop, a finite-time controller based on the exponential coordinate is proposed to speed up the response rate of the attitude control loop, so that the artificial singularity and redundancy can be avoided. In addition, a backstepping controller is designed for the position tracking loop to construct the thrust magnitude control input for the position dynamics and the reference rotation matrix for the attitude tracking loop. Finally, the numerical simulation results are presented to demonstrate the effectiveness of this trajectory tracking strategy.

[1]  H. Jin Kim,et al.  Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter , 2009 .

[2]  Manuel G. Ortega,et al.  Robust PID Control of the Quadrotor Helicopter , 2012 .

[3]  Octavio Garcia,et al.  Robust Backstepping Control Based on Integral Sliding Modes for Tracking of Quadrotors , 2014, J. Intell. Robotic Syst..

[4]  Marco A. Moreno-Armendáriz,et al.  The trajectory tracking problem for an unmanned four-rotor system: flatness-based approach , 2012, Int. J. Control.

[5]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[6]  Richard M. Murray,et al.  Tracking for fully actuated mechanical systems: a geometric framework , 1999, Autom..

[7]  Felix Mora-Camino,et al.  Attitude control of a quadrotor aircraft using LQR state feedback controller with full order state observer , 2013, The SICE Annual Conference 2013.

[8]  Boris Lohmann,et al.  Trajectory tracking control for a quadrotor helicopter based on backstepping using a decoupling quaternion parametrization , 2013, 21st Mediterranean Conference on Control and Automation.

[9]  Taeyoung Lee,et al.  Nonlinear robust tracking control of a quadrotor UAV on SE(3) , 2011, 2012 American Control Conference (ACC).

[10]  Mahmoud Moghavvemi,et al.  Flight PID controller design for a UAV quadrotor , 2010 .

[11]  Sangchul Won,et al.  PID based sliding mode controller design for the micro quadrotor , 2013, 2013 13th International Conference on Control, Automation and Systems (ICCAS 2013).

[12]  Qi Li,et al.  Global set stabilisation of the spacecraft attitude using finite-time control technique , 2009, Int. J. Control.

[13]  Roland Siegwart,et al.  PID vs LQ control techniques applied to an indoor micro quadrotor , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[14]  Ümit Özgüner,et al.  Sliding Mode Control of a Quadrotor Helicopter , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[15]  Jie Huang,et al.  Finite-time control for robot manipulators , 2002, Syst. Control. Lett..

[16]  Zhixiang Zhang,et al.  Trajectory Tracking of Quadrotor Aerial Robot Using Improved Dynamic Inversion Method , 2013 .

[17]  S. Janardhanan,et al.  A finite-time convergent sliding mode control for rigid underactuated robotic manipulator , 2014 .

[18]  E. Fels,et al.  Beckenbach, E. F., and Bellman R.: Inequalities, Springer Verlag, Berlin‐Göt‐tingen‐Heidelberg, 1961. ([Hungarian Language Ignored]) 276 Seiten, Preis 1 r. 9 k , 1966 .

[19]  Rita Cunha,et al.  Nonlinear trajectory tracking control of a quadrotor vehicle , 2009, 2009 European Control Conference (ECC).

[20]  Jun Li,et al.  Dynamic analysis and PID control for a quadrotor , 2011, 2011 IEEE International Conference on Mechatronics and Automation.

[21]  A. Swarup,et al.  Development of backstepping based sliding mode control for a quadrotor , 2014, 2014 IEEE 10th International Colloquium on Signal Processing and its Applications.