Electron microscopy analysis of Ti-substituted Li2MnO3 positive electrode before and after carbothermal reduction

[1]  M. Tabuchi,et al.  Synthesis of high-capacity Ti- and/or Fe-substituted Li2MnO3 positive electrode materials with high initial cycle efficiency by application of the carbothermal reduction method , 2013 .

[2]  K. Kubota,et al.  Direct synthesis of oxygen-deficient Li2MnO3−x for high capacity lithium battery electrodes , 2012 .

[3]  J. Colin,et al.  Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the Initial Charge/Discharge Cycle Studied by Advanced Electron Microscopy , 2012 .

[4]  K. Amine,et al.  Improved rate capability in a high-capacity layered cathode material via thermal reduction , 2011 .

[5]  Paulo J. Ferreira,et al.  Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution , 2011 .

[6]  T. Akita,et al.  Participation of Oxygen in Charge/Discharge Reactions in Li1.2Mn0.4Fe0.4O2: Evidence of Removal/Reinsertion of Oxide Ions , 2011 .

[7]  Yuichi Sato,et al.  Direct observation of the partial formation of a framework structure for Li-rich layered cathode mat , 2011 .

[8]  D. Abraham,et al.  Analytical electron microscopy of Li1.2Co0.4Mn0.4O2 for lithium-ion batteries , 2011 .

[9]  M. Shikano,et al.  Formation and Disappearance of Spinel Nanograins in Li1.2 − x Mn0.4Fe0.4O2 ( 0 ≤ x ≤ 0.99 ) during Extraction and Insertion of Li Ions , 2009 .

[10]  R. Twesten,et al.  Review of recent advances in spectrum imaging and its extension to reciprocal space. , 2009, Journal of electron microscopy.

[11]  M. Shikano,et al.  Real-Space Observation of Li Extraction∕Insertion in Li1.2Mn0.4Fe0.4O2 Positive Electrode Material for Li-Ion Batteries , 2008 .

[12]  John T. Vaughey,et al.  Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7) , 2008 .

[13]  D. Abraham,et al.  Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy , 2008 .

[14]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[15]  M. Shikano,et al.  Fe-rich and Mn-rich nanodomains in Li1.2Mn0.4Fe0.4O2 positive electrode materials for lithium-ion batteries , 2007 .

[16]  M. Tabuchi,et al.  Heat-Treatment Effect on Phase Stability, Cation Distribution, Chemical Composition, and Electrochemical Behavior for Fe-Substituted Li2MnO3 , 2005 .

[17]  Zhonghua Lu,et al.  Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2 , 2002 .

[18]  J. Paulsen,et al.  Novel Lithium‐Ion Cathode Materials Based on Layered Manganese Oxides , 2001 .

[19]  F. Izumi,et al.  A Rietveld-Analysis Programm RIETAN-98 and its Applications to Zeolites , 2000 .

[20]  S. Yamanaka,et al.  SYNTHESIS OF SOLID SOLUTIONS IN A SYSTEM OF LICOO2-LI2MNO3 FOR CATHODE MATERIALS OF SECONDARY LITHIUM BATTERIES , 1997 .

[21]  N. Kosugi,et al.  Electron energy loss and X-ray absorption spectroscopy of rutile and anatase: a test of structural sensitivity , 1989 .