Numerical identification of the thermal properties of early age concrete using inverse heat transfer problem

[1]  W. Zhou,et al.  A hygro-thermo-chemical analysis of concrete at an early age and beyond under dry-wet conditions based on a fixed model , 2017 .

[2]  J. Maděra,et al.  Assessment of fast heat evolving processes using inverse analysis of calorimetric data , 2017 .

[3]  Keun-Hyeok Yang,et al.  Comparison of Strength–Maturity Models Accounting for Hydration Heat in Massive Walls , 2016 .

[4]  B. Klemczak,et al.  Assessment of concrete strength development models with regard to concretes with low clinker cements , 2016 .

[5]  Michał A. Glinicki,et al.  Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures , 2016, Materials.

[6]  Michał A. Glinicki,et al.  Prediction of the Chloride Resistance of Concrete Modified with High Calcium Fly Ash Using Machine Learning , 2015, Materials.

[7]  B. Klemczak Modeling thermal-shrinkage stresses in early age massive concrete structures – Comparative study of basic models , 2014 .

[8]  M. Glinicki,et al.  Evaluation of impermeability of concrete containing calcareous fly ash in respect to environmental media , 2014 .

[9]  Grzegorz Knor,et al.  INFLUENCE OF CALCAREOUS FLY ASH ON THE TEMPERATURE OF CONCRETE IN MASSIVE ELEMENTS DURING THE FIRST 72 HOURS OF HARDENING WPŁYW POPIOŁÓW LOTNYCH WAPIENNYCH NA TEMPERATURĘ BETONU W CZASIE PIERWSZYCH 72 GODZIN TWARDNIENIA W ELEMENTACH MASYWNYCH , 2014 .

[10]  P. Yan,et al.  Evaluation of early age mechanical properties of concrete in real structure , 2013 .

[11]  D. Mikulić,et al.  Analysis of Thermal Properties of Cement Paste During Setting and Hardening , 2013 .

[12]  Baik-Soon Cho,et al.  Effective Prediction of Thermal Conductivity of Concrete Using Neural Network Method , 2012 .

[13]  Gyula Gróf,et al.  Inverse identification of temperature-dependent thermal conductivity via genetic algorithm with cost function-based rearrangement of genes , 2012 .

[14]  Gyula Gróf,et al.  Simultaneous Identification of Temperature-Dependent Thermal Properties via Enhanced Genetic Algorithm , 2012 .

[15]  Jun Zhang,et al.  Interior Relative Humidity of Normal- and High-Strength Concrete at Early Age , 2012 .

[16]  Adrian M. Lawrence,et al.  Effect of Early Age Strength on Cracking in Mass Concrete Containing Different Supplementary Cementitious Materials: Experimental and Finite-Element Investigation , 2012 .

[17]  Yu Hu,et al.  Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes , 2012 .

[18]  Mark A. Lukas,et al.  Comparing parameter choice methods for regularization of ill-posed problems , 2011, Math. Comput. Simul..

[19]  Sébastien Le Digabel,et al.  Algorithm xxx : NOMAD : Nonlinear Optimization with the MADS algorithm , 2010 .

[20]  Gabriele Bertagnoli,et al.  Numerical modelling of early-age concrete hardening , 2009 .

[21]  Christian Meyer,et al.  Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure , 2009 .

[22]  William M. Chirdon,et al.  Simultaneous Inverse Identification of Transient Thermal Properties and Heat Sources Using Sparse Sensor Information , 2007 .

[23]  Samir Hamdi,et al.  Method of lines , 2007, Scholarpedia.

[24]  William M. Chirdon,et al.  A method for measuring transient thermal diffusivity in hydrating Portland cement mortars using an oscillating boundary temperature , 2007 .

[25]  Dale P. Bentz,et al.  Influence of Water-to-Cement Ratio on Hydration Kinetics: Simple Models Based on Spatial Considerations , 2006 .

[26]  B. Remy,et al.  HOT WIRE METHOD FOR THE THERMAL CHARACTERIZATION OF MATERIALS: INVERSE PROBLEM APPLICATION , 2003 .

[27]  E. O'brien,et al.  A new methodology for determining thermal properties and modelling temperature development in hydrating concrete , 2003 .

[28]  G. De Schutter,et al.  Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws , 2002 .

[29]  P Duce,et al.  An improved model for determining degree-day values from daily temperature data , 2001, International journal of biometeorology.

[30]  Charles Audet,et al.  Analysis of Generalized Pattern Searches , 2000, SIAM J. Optim..

[31]  Lester Ingber,et al.  Adaptive simulated annealing (ASA): Lessons learned , 2000, ArXiv.

[32]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[33]  Luc Taerwe,et al.  Specific heat and thermal diffusivity of hardening concrete , 1995 .

[34]  Luc Taerwe,et al.  General hydration model for portland cement and blast furnace slag cement , 1995 .

[35]  Mirko Krivánek,et al.  Simulated Annealing: A Proof of Convergence , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  P. Toint,et al.  A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds , 1991 .

[37]  John A. Bickley,et al.  Supplementary cementing materials for concrete , 1988 .

[38]  Z. Giergiczny,et al.  Pozzolanic and hydraulic activity of calcareous fly ash , 2013 .

[39]  N. Ukrainczyk,et al.  Thermal properties of hydrating calcium aluminate cement pastes , 2010 .

[40]  Thomas G. Flaig,et al.  SIMULATION AND MATHEMATICAL OPTIMIZATION OF THE HYDRATION OF CONCRETE FOR AVOIDING THERMAL CRACKS , 2009 .

[41]  Anton K. Schindler,et al.  Effect of Temperature on Hydration of Cementitious Materials , 2004 .

[42]  J. Dennis,et al.  Pattern search algorithms for mixed variable general constrained optimization problems , 2003 .

[43]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[44]  Robert Otto Rasmussen,et al.  CONCRETE TEMPERATURE MODELING AND STRENGTH PREDICTION USING MATURITY CONCEPTS IN THE FHWA HIPERPAV SOFTWARE , 2001 .

[45]  M. N. Özişik,et al.  Inverse Heat Transfer: Fundamentals and Applications , 2000 .

[46]  Nicholas I. M. Gould,et al.  A globally convergent Lagrangian barrier algorithm for optimization with general inequality constraints and simple bounds , 1997, Math. Comput..

[47]  Patrik Groth,et al.  Modelling of temperature and moisture field in concrete to study early age movements as a basis for stress analysis , 1995 .

[48]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[49]  Heinz W. Engl,et al.  On the choice of the regularization parameter for iterated Tikhonov regularization of ill-posed problems , 1987 .

[50]  Zdenek P. Bazant,et al.  Pore Pressure and Drying of Concrete at High Temperature , 1978 .

[51]  P. F. Hansen,et al.  MATURITY COMPUTER FOR CONTROLLED CURING AND HARDENING OF CONCRETE , 1977 .

[52]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..